Ramakrishna-7b-v4 / README.md
Kukedlc's picture
Upload folder using huggingface_hub
85e4bf9 verified
metadata
tags:
  - merge
  - mergekit
  - lazymergekit
  - automerger/YamShadow-7B
  - automerger/OgnoExperiment27-7B
  - automerger/PasticheNeuralsirkrishna-7B
  - automerger/Experiment26Neuralarjuna-7B
  - Kukedlc/NeuralGanesha-7b
base_model:
  - automerger/YamShadow-7B
  - automerger/OgnoExperiment27-7B
  - automerger/PasticheNeuralsirkrishna-7B
  - automerger/Experiment26Neuralarjuna-7B
  - Kukedlc/NeuralGanesha-7b

Ramakrishna-7b-v4

Ramakrishna-7b-v4 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: automerger/YamShadow-7B
    # No parameters necessary for base model
  - model: automerger/YamShadow-7B
    parameters:
      density: 0.66
      weight: 0.2
  - model: automerger/OgnoExperiment27-7B
    parameters:
      density: 0.55
      weight: 0.2
  - model: automerger/PasticheNeuralsirkrishna-7B
    parameters:
      density: 0.44
      weight: 0.2
  - model: automerger/Experiment26Neuralarjuna-7B
    parameters:
      density: 0.33
      weight: 0.2
  - model: Kukedlc/NeuralGanesha-7b
    parameters:
      density: 0.22
      weight: 0.2
merge_method: dare_ties
base_model: automerger/YamShadow-7B
parameters:
  int8_mask: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/Ramakrishna-7b-v4"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])