Edit model card

WARNING: Not for Use - Bug INSTINST in response.

This model was merged, trained, and so on, thanks to the knowledge I gained from reading Maxime Labonne's course. Special thanks to him!

Labonne LLM Course

NeuTrixOmniBe

NeuTrixOmniBe-DPO

NeuTrixOmniBe-DPO is a merge of the following models using LazyMergekit:

🧩 Configuration

MODEL_NAME = "NeuTrixOmniBe-DPO"
yaml_config = """
slices:
  - sources:
      - model: CultriX/NeuralTrix-7B-dpo
        layer_range: [0, 32]
      - model: paulml/OmniBeagleSquaredMBX-v3-7B-v2
        layer_range: [0, 32]
merge_method: slerp
base_model: CultriX/NeuralTrix-7B-dpo
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
"""

It was then trained with DPO using:

  • Intel/orca_dpo_pairs

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Kukedlc/NeuTrixOmniBe-DPO"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=128, do_sample=True, temperature=0.5, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 76.17
AI2 Reasoning Challenge (25-Shot) 72.78
HellaSwag (10-Shot) 89.03
MMLU (5-Shot) 64.28
TruthfulQA (0-shot) 77.21
Winogrande (5-shot) 85.16
GSM8k (5-shot) 68.54
Downloads last month
92
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Kukedlc/NeuTrixOmniBe-DPO

Spaces using Kukedlc/NeuTrixOmniBe-DPO 5

Evaluation results