🧩 Configuration
slices:
- sources:
- model: liminerity/M7-7b
layer_range: [0, 32]
- model: AurelPx/Percival_01-7b-slerp
layer_range: [0, 32]
merge_method: slerp
base_model: liminerity/M7-7b
parameters:
t:
- filter: self_attn
value: [0.46906470291789715, 0.03737328419178776, 0.7047058204519013, 0.8608703290277633, 0.1649252541060071]
- filter: mlp
value: [0.5309352970821029, 0.9626267158082122, 0.13912967097223672, 0.13912967097223672, 0.8350747458939929]
- value: 0.3134290046506599
dtype: bfloat16
random_seed: 0
```
## 💻 Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ksgk-fy/M7Percival_010.47-0.04-0.7-0.86-0.16-0.31-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.