Krithika-p's picture
End of training
9bbe313
|
raw
history blame
4.02 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: my_awesome_mind_model
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.2793103448275862

my_awesome_mind_model

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3078
  • Accuracy: 0.2793

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.73 2 2.6832 0.1241
No log 1.82 5 2.6800 0.1103
No log 2.91 8 2.6726 0.1207
2.6498 4.0 11 2.6580 0.1483
2.6498 4.73 13 2.6454 0.1379
2.6498 5.82 16 2.6245 0.1379
2.6498 6.91 19 2.6038 0.1414
2.6057 8.0 22 2.5839 0.1552
2.6057 8.73 24 2.5656 0.1655
2.6057 9.82 27 2.5378 0.1552
2.524 10.91 30 2.5192 0.1862
2.524 12.0 33 2.4996 0.1931
2.524 12.73 35 2.4900 0.2069
2.524 13.82 38 2.4663 0.2138
2.4304 14.91 41 2.4498 0.2207
2.4304 16.0 44 2.4309 0.2138
2.4304 16.73 46 2.4291 0.2310
2.4304 17.82 49 2.4106 0.2517
2.3519 18.91 52 2.3944 0.2310
2.3519 20.0 55 2.3949 0.2414
2.3519 20.73 57 2.3807 0.2414
2.2774 21.82 60 2.3661 0.2379
2.2774 22.91 63 2.3600 0.2345
2.2774 24.0 66 2.3572 0.2483
2.2774 24.73 68 2.3430 0.2345
2.2402 25.82 71 2.3369 0.2586
2.2402 26.91 74 2.3365 0.2586
2.2402 28.0 77 2.3301 0.2621
2.2402 28.73 79 2.3274 0.2724
2.1901 29.82 82 2.3266 0.2759
2.1901 30.91 85 2.3207 0.2655
2.1901 32.0 88 2.3115 0.2724
2.148 32.73 90 2.3084 0.2724
2.148 33.82 93 2.3082 0.2724
2.148 34.91 96 2.3094 0.2828
2.148 36.0 99 2.3080 0.2793
2.1303 36.36 100 2.3078 0.2793

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0