|
import argparse |
|
import os |
|
import glog |
|
import torch |
|
from torch.profiler import profile, record_function, ProfilerActivity |
|
from transformers import AutoTokenizer |
|
from lib.utils.unsafe_import import model_from_hf_path |
|
import time |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--hf_path', default='meta-llama/Llama-2-70b-hf', type=str) |
|
parser.add_argument('--batch_size', default=1, type=int) |
|
parser.add_argument('--seqlen', default=1, type=int) |
|
parser.add_argument('--samples', default=100, type=int) |
|
parser.add_argument('--no_use_cuda_graph', action='store_true') |
|
parser.add_argument('--no_use_flash_attn', action='store_true') |
|
|
|
|
|
def main(args): |
|
model, model_str = model_from_hf_path(args.hf_path, |
|
use_cuda_graph=not args.no_use_cuda_graph, |
|
use_flash_attn=not args.no_use_flash_attn) |
|
tokenizer = AutoTokenizer.from_pretrained(model_str) |
|
|
|
prompt = 'It is a truth universally acknowledged that' |
|
inputs = tokenizer(prompt, return_tensors='pt') |
|
token = inputs['input_ids'][0:1, 0:1].cuda().repeat(args.batch_size, args.seqlen) |
|
model(token, use_cache=False) |
|
|
|
torch.cuda.synchronize() |
|
start = time.time() |
|
for _ in range(args.samples): |
|
model(token, use_cache=False) |
|
torch.cuda.synchronize() |
|
end = time.time() |
|
print('TIME', (end - start) / args.samples) |
|
|
|
|
|
if __name__ == '__main__': |
|
torch.set_grad_enabled(False) |
|
torch.manual_seed(0) |
|
args = parser.parse_args() |
|
main(args) |
|
|