KnutJaegersberg commited on
Commit
c1a41d7
1 Parent(s): 0d7dade

Upload 132 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +10 -0
  2. added_tokens.json +4 -0
  3. config.json +40 -0
  4. generation_config.json +7 -0
  5. model-00001-of-00002.safetensors +3 -0
  6. model-00002-of-00002.safetensors +3 -0
  7. model.safetensors.index.json +0 -0
  8. quip-sharp/.gitignore +16 -0
  9. quip-sharp/LICENSE +674 -0
  10. quip-sharp/README.md +114 -0
  11. quip-sharp/docs/Makefile +2 -0
  12. quip-sharp/docs/img/kissing2d.png +0 -0
  13. quip-sharp/docs/img/lattice_err.png +0 -0
  14. quip-sharp/docs/img/overview.svg +0 -0
  15. quip-sharp/docs/index.html +835 -0
  16. quip-sharp/docs/index.md +254 -0
  17. quip-sharp/eval_ppl.py +67 -0
  18. quip-sharp/eval_zeroshot.py +60 -0
  19. quip-sharp/gen_speed.py +45 -0
  20. quip-sharp/hessian_offline_llama.py +256 -0
  21. quip-sharp/hfize_llama.py +177 -0
  22. quip-sharp/interactive_gen.py +46 -0
  23. quip-sharp/lib/__init__.py +1 -0
  24. quip-sharp/lib/__pycache__/__init__.cpython-310.pyc +0 -0
  25. quip-sharp/lib/__pycache__/__init__.cpython-39.pyc +0 -0
  26. quip-sharp/lib/algo/__init__.py +0 -0
  27. quip-sharp/lib/algo/__pycache__/__init__.cpython-39.pyc +0 -0
  28. quip-sharp/lib/algo/__pycache__/outlier_channel_split.cpython-39.pyc +0 -0
  29. quip-sharp/lib/algo/__pycache__/preprocess.cpython-39.pyc +0 -0
  30. quip-sharp/lib/algo/__pycache__/quip.cpython-39.pyc +0 -0
  31. quip-sharp/lib/algo/outlier_channel_split.py +41 -0
  32. quip-sharp/lib/algo/preprocess.py +10 -0
  33. quip-sharp/lib/algo/process.py +9 -0
  34. quip-sharp/lib/algo/quip.py +417 -0
  35. quip-sharp/lib/codebook/__init__.py +31 -0
  36. quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc +0 -0
  37. quip-sharp/lib/codebook/__pycache__/__init__.cpython-39.pyc +0 -0
  38. quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc +0 -0
  39. quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-39.pyc +0 -0
  40. quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc +0 -0
  41. quip-sharp/lib/codebook/__pycache__/latticed4.cpython-39.pyc +0 -0
  42. quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc +0 -0
  43. quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-39.pyc +0 -0
  44. quip-sharp/lib/codebook/half_integer_4bit_1col.py +138 -0
  45. quip-sharp/lib/codebook/latticed4.py +220 -0
  46. quip-sharp/lib/codebook/latticee8_padded12.py +265 -0
  47. quip-sharp/lib/linear/__init__.py +0 -0
  48. quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc +0 -0
  49. quip-sharp/lib/linear/__pycache__/__init__.cpython-39.pyc +0 -0
  50. quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc +0 -0
.gitattributes CHANGED
@@ -33,3 +33,13 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ quip-sharp/quiptools/build/lib.linux-x86_64-cpython-310/quiptools_cuda.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
37
+ quip-sharp/quiptools/build/lib.linux-x86_64-cpython-39/quiptools_cuda.cpython-39-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
38
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_e8p_gemv.o filter=lfs diff=lfs merge=lfs -text
39
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools_wrapper.o filter=lfs diff=lfs merge=lfs -text
40
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-310/quiptools.o filter=lfs diff=lfs merge=lfs -text
41
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-39/quiptools_e8p_gemv.o filter=lfs diff=lfs merge=lfs -text
42
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-39/quiptools_wrapper.o filter=lfs diff=lfs merge=lfs -text
43
+ quip-sharp/quiptools/build/temp.linux-x86_64-cpython-39/quiptools.o filter=lfs diff=lfs merge=lfs -text
44
+ quip-sharp/quiptools/dist/quiptools_cuda-0.0.0-py3.10-linux-x86_64.egg filter=lfs diff=lfs merge=lfs -text
45
+ quip-sharp/quiptools/dist/quiptools_cuda-0.0.0-py3.9-linux-x86_64.egg filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "</s>": 64001,
3
+ "<s>": 64000
4
+ }
config.json ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/run/media/knut/HD2/LLMs2/40b/fine-tuned/Tess-34B-v1.4",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "bos_token_id": 64000,
8
+ "eos_token_id": 64001,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 7168,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 20480,
13
+ "max_position_embeddings": 200000,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 56,
16
+ "num_hidden_layers": 60,
17
+ "num_key_value_heads": 8,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 1,
20
+ "quip_params": {
21
+ "codebook": "E8P12",
22
+ "codebook_version": 0,
23
+ "codesz": 8,
24
+ "fused": true,
25
+ "idx_dtype": "torch.int16",
26
+ "lora_rank": 0,
27
+ "model_version": 0,
28
+ "outlier_channel_split": false,
29
+ "packsz": 1,
30
+ "rescale_WH": false
31
+ },
32
+ "rms_norm_eps": 1e-05,
33
+ "rope_scaling": null,
34
+ "rope_theta": 5000000.0,
35
+ "tie_word_embeddings": false,
36
+ "torch_dtype": "float16",
37
+ "transformers_version": "4.34.0",
38
+ "use_cache": false,
39
+ "vocab_size": 64002
40
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.34.0"
7
+ }
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3accaaf5f23e119a17a279dd360f7b77b420ff8ac831bfeb4a6b8939621ba99e
3
+ size 9299868984
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fca7572b3f9c2455b621458eecd4a109d5733b40954e89283637203bf15089e
3
+ size 917532800
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
quip-sharp/.gitignore ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.pt
2
+ *~
3
+ *.safetensors
4
+ *.err
5
+ *.out
6
+ *.json
7
+ __pycache__/
8
+ #*
9
+ slurm_out/
10
+ hfized/
11
+ quiptools/build/
12
+ quiptools/dist
13
+ hadamard_cuda/build/
14
+ hadamard_cuda/dist/
15
+ report*.nsys-rep
16
+ report*.sqlite
quip-sharp/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
quip-sharp/README.md ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # QuIP#: [QuIP](https://github.com/jerry-chee/QuIP) with Lattice Codebooks
2
+ This repository contains the official code for **QuIP#**, a weights-only quantization method that is able to achieve near fp16 performance using only 2 bits per weight.
3
+ QuIP# combines lattice codebooks with incoherence processing to create state-of-the-art 2 bit quantized models.
4
+ We provide a full suite of 2 bit Llama models quantized using QuIP# as well as other Llama-architecture models (e.g. Mistral).
5
+ We also provide a full codebase that allows users to quantize and deploy their own models as well as CUDA kernels that accelerate inference for QuIP# models.
6
+
7
+ | Method | Precision | Wiki $\downarrow$ | C4 $\downarrow$ | ArcE $\uparrow$ | PiQA $\uparrow$ |
8
+ |:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
9
+ | Native | 16 bit | 3.120 | 5.533 | 0.597 | 0.809 |
10
+ | OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
11
+ | OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
12
+ | QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
13
+ | **QuIP#** | **2 bit** | **4.156** | **6.545** | **0.595** | 0.785 |
14
+
15
+ Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
16
+
17
+ ## ☞ Read more about QuIP# and how it works [here](https://cornell-relaxml.github.io/quip-sharp/)!
18
+
19
+ ## News
20
+
21
+ - We have "deprecated" the 2 bit D4 quantized models as they perform worse than 2 bit E8P models and are slower to run. The code to quantize and run D4 models is still in the codebase, but the D4 models have been removed from HF and we are no longer actively supporting them.
22
+ - We recently added 2 and 4 bit quantized versions of [Mistral 7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and [OpenHermes 2.5](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B). See the Model Zoo section for more details.
23
+ - **The 4 bit models have been replaced by new bit-packed models that end with the `-Packed` suffix. The old models have been deprecated, removed, and do not work with the current code (and vice versa). Make sure to pull the latest code to run the 4 bit models.**
24
+
25
+ ## Installation
26
+
27
+ - Clone the repo
28
+ - Install the requirements via `pip install -r requirements.txt`. You may want to use the official pytorch commands to get the CUDA versions.
29
+ - Build and install the matmul CUDA kernels. (`cd quiptools && python setup.py install && cd ../`)
30
+
31
+ ## Quantization
32
+
33
+ - To quantize a Llama architecture (q/k/v/o/up/gate/down) model: `python quantize_llama.py --<FLAGS>`. The primary flags are as follows. See the arg list for the remaining flags.
34
+ - `--save_path <output path>`.
35
+ - `--base_model <Hugging Face (HF) model card or local path>`.
36
+ For Llama 1, we provide weights at `relaxml/Llama-1-<7,13,30,65>b-hf`. For other models, use model cards from HF.
37
+ - `--hessian_path <path to precomputed Hessians>`.
38
+ We provide precomputed Hessians at repo_id's `relaxml/Hessians*-<n>`. These Hessians were computed with `n` samples and the context length and attention mask used to train the original model. To download them, run `python scripts/download_hf.py --folder_path <local path to save Hessians> --repo_id <repo_id> --read_token <huggingface read token>`.
39
+ - `--codebook <codebook argument>`.
40
+ We recommend using the 2 bit E8P codebook with `E8P12`. This codebook gives the best quantization at 2 bits. Other options are the 2 bit `D4` codebook and the 4 bit Half Integer grid `HI4B1C`. See our blog post for details on the codebooks.
41
+ - `--scale_override <quantization scale parameter>`.
42
+ We suggest the following scale parameters for each codebook: `{E8P12: 0.9, D4: 1.1, HI4B1C: 2.7}`, however you may want to play around with scales if quantizing your own models.
43
+ - To convert a quantized model to the HF format: `CUDA_VISIBLE_DEVICES=0 python hfize_llama.py --quantized_path <output path of quantize_llama.py> --hf_output_path <path to save HF version>`
44
+ - To generate your own Hessians for a Llama architecture model: `python hessian_offline_llama --<FLAGS>`. The primary flags are as follows. See the arg list for the remaining flags. **Hessian calculation uses a `fp64` accumulator for numerical accuracy. Running this script on a device with slow `fp64` capabilities will take longer.**
45
+ - `--batch_size` Batch size per GPU. Tune so you don't run out of memory.
46
+ - `--devset_size` Size of devset to use for Hessian generation.
47
+ - `--ctx_size` Context size (sequence length) to use for Hessian generation.
48
+ - `--base_model` Same as in `quantize_llama.py`.
49
+
50
+ ### I want to quantize a non-Llama architecture model, what do I do?
51
+
52
+ Currently, `hessian_offline_llama.py`, `quantize_llama.py`, and `hfize_llama.py` are written for the Llama architecture. However, the only "special" things they do are identify the relevant `nn.Linear` layers that need to be quantized (q/k/v/o/up/gate/down), inject Hessian hooks, and quantize them.
53
+ If you want to quantize a non-Llama architecture model, you will need to find the relevant `nn.Linear` files and make your own hessian_offline/quantize/hfize files. This should be pretty straightforward and feel free to open a GitHub ticket if you run into any issues.
54
+ You will also need copy `modeling_<architecture>.py` from the HF source into the `models/` folder and replace the relevant `nn.Linear` layers with `QuantizedLinear` layers (see how `models/llama.py` does it).
55
+ Our current `quantize_llama.py` implementation fuses the q/k/v layers and the up/gate layers for increased speed since they share the same Hessians. However, this is not a requirement and you can also quantize those layers individually.
56
+
57
+
58
+ ## Evaluation
59
+
60
+ See our blog post for a full set of results.
61
+ - Perplexity on Wikitext2 and C4: `CUDA_VISIBLE_DEVICES=0 python eval_ppl.py --hf_path <HF version path>`
62
+ - Zero shot tasks: `CUDA_VISIBLE_DEVICES=0 python eval_zeroshot.py --tasks arc_challenge,arc_easy,boolq,piqa,winogrande --batch_size <batch size> --hf_path <HF version path>`
63
+ - Timing test for forward pass of one token: `CUDA_VISIBLE_DEVICES=0 python gen_speed.py --hf_path <HF version path> --batch_size <batch_size>`.
64
+
65
+ *The `CUDA_VISIBLE_DEVICES` environmental variable is only needed if you get CUDA errors from running on more GPUs than needed to fit the model. This is an artifact of HF accelerate.*
66
+
67
+ ## Text Generation
68
+
69
+ To use our models as part of an interactive generation script, run `CUDA_VISIBLE_DEVICES=0 python interactive_gen.py --hf_path <HF version path> --max_length <max generation length>`.
70
+ `interactive_gen.py` is very rudimentary and you may want to write your own.
71
+ All it does is call HF's `.generate()` function.
72
+
73
+ ## Model Zoo
74
+ We provide quantized models available on HF.
75
+ To use them, pass the given HF repo_id to `--hf_path`.
76
+ We recommend using the `E8P` codebook which quantizes to 2 bits per weight, which gives the best quantization at 2 bits.
77
+ See our blogpost for details on the codebooks.
78
+
79
+ | Lattice Codebook | Base Model | Weight Bits | HF repo_id |
80
+ |:----------------:|:-----------|:-----------:|:----------------|
81
+ | E8P (recommended)| Llama 2 70b | 2 | [`relaxml/Llama-2-70b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-70b-E8P-2Bit) |
82
+ | | Llama 2 70b chat| 2 | [`relaxml/Llama-2-70b-chat-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-70b-chat-E8P-2Bit) |
83
+ | | Llama 2 13b | 2 | [`relaxml/Llama-2-13b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-13b-E8P-2Bit) |
84
+ | | Llama 2 13b chat| 2 | [`relaxml/Llama-2-13b-chat-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-13b-chat-E8P-2Bit) |
85
+ | | Llama 2 7b | 2 | [`relaxml/Llama-2-7b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-7b-E8P-2Bit) |
86
+ | | Llama 2 7b chat| 2 | [`relaxml/Llama-2-7b-chat-E8P-2Bit`](https://huggingface.co/relaxml/Llama-2-7b-chat-E8P-2Bit) |
87
+ | | Llama 1 65b | 2 | [`relaxml/Llama-1-65b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-1-65b-E8P-2Bit) |
88
+ | | Llama 1 30b | 2 | [`relaxml/Llama-1-30b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-1-30b-E8P-2Bit) |
89
+ | | Llama 1 13b | 2 | [`relaxml/Llama-1-13b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-1-13b-E8P-2Bit) |
90
+ | | Llama 1 7b | 2 | [`relaxml/Llama-1-7b-E8P-2Bit`](https://huggingface.co/relaxml/Llama-1-7b-E8P-2Bit) |
91
+ | | Mistral 7b | 2 | [`relaxml/Mistral-7b-E8P-2Bit`](https://huggingface.co/relaxml/Mistral-7b-E8P-2Bit) |
92
+ | | OpenHermes 2.5 | 2 | [`relaxml/Openhermes-7b-E8P-2Bit`](https://huggingface.co/relaxml/Openhermes-7b-E8P-2Bit) |
93
+ | HI | Llama 2 70b | 4 | [`relaxml/Llama-2-70b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-2-70b-HI-4Bit-Packed) |
94
+ | | Llama 2 13b | 4 | [`relaxml/Llama-2-13b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-2-13b-HI-4Bit-Packed) |
95
+ | | Llama 2 7b | 4 | [`relaxml/Llama-2-7b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-2-7b-HI-4Bit-Packed) |
96
+ | | Llama 1 65b | 4 | [`relaxml/Llama-1-65b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-1-65b-HI-4Bit-Packed) |
97
+ | | Llama 1 30b | 4 | [`relaxml/Llama-1-30b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-1-30b-HI-4Bit-Packed) |
98
+ | | Llama 1 13b | 4 | [`relaxml/Llama-1-13b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-1-13b-HI-4Bit-Packed) |
99
+ | | Llama 1 7b | 4 | [`relaxml/Llama-1-7b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Llama-1-7b-HI-4Bit-Packed) |
100
+ | | Mistral 7b | 4 | [`relaxml/Mistral-7b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Mistral-7b-HI-4Bit-Packed) |
101
+ | | OpenHermes 2.5 | 4 | [`relaxml/Openhermes-7b-HI-4Bit-Packed`](https://huggingface.co/relaxml/Openhermes-7b-HI-4Bit-Packed) |
102
+
103
+
104
+ ## CUDA Graphs
105
+
106
+ We provide a wrapper class that integrates our models with CUDA graphs in `model/graph_wrapper.py`.
107
+ Currently, the torch CUDA graph implementation does not work with HF's `.generate()` function, but model calls with static input and output sizes can utilize the CUDA graph wrapper for better performance.
108
+ Most of our evaluation scripts use the graph wrapper by default unless the `--no_use_cuda_graph` flag is passed in.
109
+
110
+ ## Other
111
+
112
+ Use of Llama models is governed by the Meta license available [here](https://ai.meta.com/resources/models-and-libraries/llama-downloads/).
113
+ Use of Mistral models is governed by the Apache 2.0 license.
114
+ Use of this code is governed by the GNU GPL v3 license.
quip-sharp/docs/Makefile ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ all:
2
+ pandoc -s --mathjax index.md -o index.html --metadata=title="QuIP#" --variable=title=""
quip-sharp/docs/img/kissing2d.png ADDED
quip-sharp/docs/img/lattice_err.png ADDED
quip-sharp/docs/img/overview.svg ADDED
quip-sharp/docs/index.html ADDED
@@ -0,0 +1,835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <!DOCTYPE html>
2
+ <html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
3
+ <head>
4
+ <meta charset="utf-8" />
5
+ <meta name="generator" content="pandoc" />
6
+ <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
7
+ <title>QuIP#</title>
8
+ <style>
9
+ html {
10
+ font-family: cambria;
11
+ font-size: 16pt;
12
+ color: #1a1a1a;
13
+ background-color: #fdfdfd;
14
+ }
15
+ body {
16
+ margin: 0 auto;
17
+ max-width: 36em;
18
+ padding-left: 50px;
19
+ padding-right: 50px;
20
+ padding-top: 50px;
21
+ padding-bottom: 50px;
22
+ hyphens: auto;
23
+ overflow-wrap: break-word;
24
+ text-rendering: optimizeLegibility;
25
+ font-kerning: normal;
26
+ }
27
+ @media (max-width: 600px) {
28
+ body {
29
+ font-size: 0.9em;
30
+ padding: 12px;
31
+ }
32
+ h1 {
33
+ font-size: 1.8em;
34
+ }
35
+ }
36
+ @media print {
37
+ html {
38
+ background-color: white;
39
+ }
40
+ body {
41
+ background-color: transparent;
42
+ color: black;
43
+ font-size: 12pt;
44
+ }
45
+ p, h2, h3 {
46
+ orphans: 3;
47
+ widows: 3;
48
+ }
49
+ h2, h3, h4 {
50
+ page-break-after: avoid;
51
+ }
52
+ }
53
+ p {
54
+ margin: 1em 0;
55
+ }
56
+ a {
57
+ color: #1a1a1a;
58
+ }
59
+ a:visited {
60
+ color: #1a1a1a;
61
+ }
62
+ img {
63
+ max-width: 100%;
64
+ }
65
+ svg {
66
+ height: auto;
67
+ max-width: 100%;
68
+ }
69
+ h1, h2, h3, h4, h5, h6 {
70
+ margin-top: 1.4em;
71
+ }
72
+ h5, h6 {
73
+ font-size: 1em;
74
+ font-style: italic;
75
+ }
76
+ h6 {
77
+ font-weight: normal;
78
+ }
79
+ ol, ul {
80
+ padding-left: 1.7em;
81
+ margin-top: 1em;
82
+ }
83
+ li > ol, li > ul {
84
+ margin-top: 0;
85
+ }
86
+ blockquote {
87
+ margin: 1em 0 1em 1.7em;
88
+ padding-left: 1em;
89
+ border-left: 2px solid #e6e6e6;
90
+ color: #606060;
91
+ }
92
+ code {
93
+ font-family: Menlo, Monaco, Consolas, 'Lucida Console', monospace;
94
+ font-size: 85%;
95
+ margin: 0;
96
+ hyphens: manual;
97
+ }
98
+ pre {
99
+ margin: 1em 0;
100
+ overflow: auto;
101
+ }
102
+ pre code {
103
+ padding: 0;
104
+ overflow: visible;
105
+ overflow-wrap: normal;
106
+ }
107
+ .sourceCode {
108
+ background-color: transparent;
109
+ overflow: visible;
110
+ }
111
+ hr {
112
+ background-color: #1a1a1a;
113
+ border: none;
114
+ height: 1px;
115
+ margin: 1em 0;
116
+ }
117
+ table {
118
+ margin: 1em 0;
119
+ border-collapse: collapse;
120
+ width: 100%;
121
+ overflow-x: auto;
122
+ display: block;
123
+ font-variant-numeric: lining-nums tabular-nums;
124
+ }
125
+ table caption {
126
+ margin-bottom: 0.75em;
127
+ }
128
+ tbody {
129
+ margin-top: 0.5em;
130
+ border-top: 1px solid #1a1a1a;
131
+ border-bottom: 1px solid #1a1a1a;
132
+ }
133
+ th {
134
+ border-top: 1px solid #1a1a1a;
135
+ padding: 0.25em 0.5em 0.25em 0.5em;
136
+ }
137
+ td {
138
+ padding: 0.125em 0.5em 0.25em 0.5em;
139
+ }
140
+ header {
141
+ margin-bottom: 4em;
142
+ text-align: center;
143
+ }
144
+ #TOC li {
145
+ list-style: none;
146
+ }
147
+ #TOC ul {
148
+ padding-left: 1.3em;
149
+ }
150
+ #TOC > ul {
151
+ padding-left: 0;
152
+ }
153
+ #TOC a:not(:hover) {
154
+ text-decoration: none;
155
+ }
156
+ code{white-space: pre-wrap;}
157
+ span.smallcaps{font-variant: small-caps;}
158
+ div.columns{display: flex; gap: min(4vw, 1.5em);}
159
+ div.column{flex: auto; overflow-x: auto;}
160
+ div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
161
+ /* The extra [class] is a hack that increases specificity enough to
162
+ override a similar rule in reveal.js */
163
+ ul.task-list[class]{list-style: none;}
164
+ ul.task-list li input[type="checkbox"] {
165
+ font-size: inherit;
166
+ width: 0.8em;
167
+ margin: 0 0.8em 0.2em -1.6em;
168
+ vertical-align: middle;
169
+ }
170
+ </style>
171
+ <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
172
+ <script
173
+ src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml-full.js"
174
+ type="text/javascript"></script>
175
+ <!--[if lt IE 9]>
176
+ <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
177
+ <![endif]-->
178
+ </head>
179
+ <body>
180
+ <style>
181
+ body { max-width: 800px !important; text-align: justify; }
182
+ tbody {
183
+ border-top: none;
184
+ border-bottom: none;
185
+ }
186
+ header { height:0px;}
187
+ tr:nth-child(2n) {
188
+ background-color: #EEEEEE;
189
+ }
190
+ th {
191
+ background-color: #EEEEEE;
192
+ }
193
+ </style>
194
+ <h2 id="quip-quip-with-lattice-codebooks">QuIP#: <a
195
+ href="https://github.com/jerry-chee/QuIP">QuIP</a> with Lattice
196
+ Codebooks</h2>
197
+ <p><a href="https://tsengalb99.github.io">Albert Tseng*</a>, <a
198
+ href="https://jerry-chee.github.io/">Jerry Chee*</a>, <a
199
+ href="https://nalzok.github.io/">Qingyao Sun</a>, <a
200
+ href="https://www.cs.cornell.edu/~kuleshov/">Volodymyr Kuleshov</a>, and
201
+ <a href="https://www.cs.cornell.edu/~cdesa/">Chris De Sa</a></p>
202
+ <hr />
203
+ <p><img src="img/overview.svg" /></p>
204
+ <p>Large language models (LLMs) exhibit amazing performance on a wide
205
+ variety of tasks such as text modeling and code generation. However,
206
+ they are also very large. For example Llama 2 70B has 70 billion
207
+ parameters that require 140GB of memory to store in half precision. This
208
+ presents many challenges, such as needing multiple GPUs just to serve a
209
+ single LLM. To address these issues, researchers have developed
210
+ compression methods that reduce the size of models without destroying
211
+ performance.</p>
212
+ <p>One class of methods, post-training quantization, compresses trained
213
+ model weights into lower precision formats to reduce memory
214
+ requirements. For example, quantizing a model from 16 bit to 2 bit
215
+ precision would reduce the size of the model by 8x, meaning that even
216
+ Llama 2 70B would fit on a single 24GB GPU. In this work, we introduce
217
+ <strong>QuIP#</strong>, which combines lattice codebooks with
218
+ incoherence processing to create state-of-the-art 2 bit quantized
219
+ models. These two methods allow QuIP# to significantly close the gap
220
+ between 2 bit quantized LLMs and unquantized 16 bit models.</p>
221
+ <div style="margin-left: auto;
222
+ margin-right: auto;
223
+ width: 90%;">
224
+ <table style="width:100%;">
225
+ <caption>Quantization results on Llama 2 70B. QuIP# achieves near-native
226
+ performance at 2 bits, outperforming all other presented
227
+ baselines.</caption>
228
+ <colgroup>
229
+ <col style="width: 16%" />
230
+ <col style="width: 16%" />
231
+ <col style="width: 16%" />
232
+ <col style="width: 16%" />
233
+ <col style="width: 16%" />
234
+ <col style="width: 16%" />
235
+ </colgroup>
236
+ <thead>
237
+ <tr class="header">
238
+ <th style="text-align: center;">Method</th>
239
+ <th style="text-align: center;">Precision</th>
240
+ <th style="text-align: center;">Wiki <span
241
+ class="math inline">\(\downarrow\)</span></th>
242
+ <th style="text-align: center;">C4 <span
243
+ class="math inline">\(\downarrow\)</span></th>
244
+ <th style="text-align: center;">ArcE <span
245
+ class="math inline">\(\uparrow\)</span></th>
246
+ <th style="text-align: center;">PiQA <span
247
+ class="math inline">\(\uparrow\)</span></th>
248
+ </tr>
249
+ </thead>
250
+ <tbody>
251
+ <tr class="odd">
252
+ <td style="text-align: center;">Native</td>
253
+ <td style="text-align: center;">16 bit</td>
254
+ <td style="text-align: center;">3.120</td>
255
+ <td style="text-align: center;">5.533</td>
256
+ <td style="text-align: center;">0.597</td>
257
+ <td style="text-align: center;">0.809</td>
258
+ </tr>
259
+ <tr class="even">
260
+ <td style="text-align: center;">OPTQ</td>
261
+ <td style="text-align: center;">3 bit</td>
262
+ <td style="text-align: center;">4.577</td>
263
+ <td style="text-align: center;">6.838</td>
264
+ <td style="text-align: center;">0.544</td>
265
+ <td style="text-align: center;"><strong>0.786</strong></td>
266
+ </tr>
267
+ <tr class="odd">
268
+ <td style="text-align: center;">OPTQ</td>
269
+ <td style="text-align: center;">2 bit</td>
270
+ <td style="text-align: center;">109.820</td>
271
+ <td style="text-align: center;">62.692</td>
272
+ <td style="text-align: center;">0.253</td>
273
+ <td style="text-align: center;">0.505</td>
274
+ </tr>
275
+ <tr class="even">
276
+ <td style="text-align: center;">QuIP</td>
277
+ <td style="text-align: center;">2 bit</td>
278
+ <td style="text-align: center;">5.574</td>
279
+ <td style="text-align: center;">8.268</td>
280
+ <td style="text-align: center;">0.544</td>
281
+ <td style="text-align: center;">0.751</td>
282
+ </tr>
283
+ <tr class="odd">
284
+ <td style="text-align: center;"><strong>QuIP#</strong></td>
285
+ <td style="text-align: center;"><strong>2 bit</strong></td>
286
+ <td style="text-align: center;"><strong>4.156</strong></td>
287
+ <td style="text-align: center;"><strong>6.545</strong></td>
288
+ <td style="text-align: center;"><strong>0.595</strong></td>
289
+ <td style="text-align: center;">0.785</td>
290
+ </tr>
291
+ </tbody>
292
+ </table>
293
+ </div>
294
+ <div
295
+ style="color:steelblue; margin-left: -14%; margin-right: auto; width: 115%">
296
+ <table>
297
+ <colgroup>
298
+ <col style="width: 3%" />
299
+ <col style="width: 96%" />
300
+ </colgroup>
301
+ <tbody>
302
+ <tr class="odd">
303
+ <td style="text-align: right;"><span
304
+ style="font-size:72pt">☞</span></td>
305
+ <td><strong>Our method, QuIP#, creates 2 bit LLMs that achieve
306
+ near-native performance, a previously unseen result. We provide a <a
307
+ href="https://huggingface.co/relaxml">full suite of 2 bit Llama 1 and 2
308
+ models quantized using QuIP#</a>, as well as a full codebase that allows
309
+ users to quantize and deploy their own models. We also provide CUDA
310
+ kernels that accelerate inference for QuIP# models. Our code is
311
+ available <a
312
+ href="https://github.com/Cornell-RelaxML/quip-sharp">here</a>.</strong></td>
313
+ </tr>
314
+ </tbody>
315
+ </table>
316
+ </div>
317
+ <h3 id="method-overview">Method Overview</h3>
318
+ <p>QuIP# relies on two main components: <em>incoherence processing</em>
319
+ and <em>lattice codebooks</em>. Incoherence processing in the context of
320
+ model quantization was introduced in QuIP. While QuIP used a Kronecker
321
+ product to perform incoherence processing, we introduce a Hadamard
322
+ transform-based incoherence approach that is more amenable to fast GPU
323
+ acceleration.</p>
324
+ <p>Incoherence-processed weights are approximately Gaussian-distributed,
325
+ which means that they are suitable for quantizing with symmetric and
326
+ “round” codebooks. We introduce a new lattice codebook based on the
327
+ <span class="math inline">\(E_8\)</span> lattice, which achieves the
328
+ optimal 8 dimension unit ball packing density. Our codebooks are
329
+ specifically designed to be hardware-friendly by exploiting symmetries
330
+ in these lattices.</p>
331
+ <h3 id="quantization-background">Quantization Background</h3>
332
+ <p>In QuIP#, we follow existing state-of-the-art post training
333
+ quantization methods and round weights to minimize the per-layer
334
+ “adaptive rounding” proxy objective</p>
335
+ <p><span class="math display">\[
336
+ \ell(\hat W)
337
+ = E_x \left[ \| (\hat W - W)x \|^2 \right]
338
+ = \operatorname{tr}\left(
339
+ (\hat W - W) H (\hat W - W)^T
340
+ \right).
341
+ \]</span></p>
342
+ <p>Here, <span class="math inline">\(W \in \mathbb{R}^{m \times
343
+ n}\)</span> is the original weight matrix in a given layer, <span
344
+ class="math inline">\(\hat W = \mathbb{R}^{m \times n}\)</span> are the
345
+ quantized weights, <span class="math inline">\(x \in
346
+ \mathbb{R}^n\)</span> is an input vector drawn uniformly at random from
347
+ a calibration set, and <span class="math inline">\(H\)</span> is the
348
+ second moment matrix of these vectors, interpreted as a proxy Hessian.
349
+ This intra-layer formulation makes quantization tracatable for large
350
+ language models. The original QuIP paper forumlated a class of adaptive
351
+ rounding methods that used linear feedback to minimize <span
352
+ class="math inline">\(\ell\)</span>. Within this class, the LDLQ
353
+ rounding algorithm was shown to be optimal; we use LDLQ in QuIP# as
354
+ well.</p>
355
+ <h3 id="incoherence-processing">Incoherence Processing</h3>
356
+ <p>The main insight of QuIP is that incoherent weight and hessian
357
+ matrices result in improved quantization performance. Informally, this
358
+ means that weights that are even in magnitude with important rounding
359
+ directions (the Hessians) that are not too large in any one coordinate
360
+ are significantly easier to quantize without catastrophic error. In some
361
+ sense, incoherence processing can be viewed as a form of outlier
362
+ suppression across weight and activation spaces.</p>
363
+ <div style="background-color: #EEEEEE;">
364
+ <p><strong>Definition.</strong> <em>We say a symmetric Hessian matrix
365
+ <span class="math inline">\(H \in \mathbb{R}^{n \times n}\)</span> is
366
+ <span class="math inline">\(\mu\)</span>-incoherent if it has an
367
+ eigendecomposition <span class="math inline">\(H = Q \Lambda
368
+ Q^T\)</span> such that for all <span class="math inline">\(i\)</span>
369
+ and <span class="math inline">\(j\)</span>, <span
370
+ class="math inline">\(|Q_{ij}| = |e_i^T Q e_j| \leq \mu /
371
+ \sqrt{n}\)</span>. By extension, we say a weight matrix <span
372
+ class="math inline">\(W \in \mathbb{R}^{m \times n}\)</span> is <span
373
+ class="math inline">\(\mu\)</span>-incoherent if for all <span
374
+ class="math inline">\(i\)</span> and <span
375
+ class="math inline">\(j\)</span>, <span class="math inline">\(|W_{ij}| =
376
+ |e_i^T W e_j| \leq \mu \|W\|_F / \sqrt{mn}\)</span>.</em></p>
377
+ </div>
378
+ <p>Incoherence is an important property for quantizing models. In QuIP,
379
+ the incoherence condition on <span class="math inline">\(H\)</span> is
380
+ required to show that LDLQ achieves a superior proxy loss to nearest and
381
+ stochastic rounding through a spectral bound on <span
382
+ class="math inline">\(H\)</span>. Therefore, it is important to be able
383
+ to incoherence-process weight and hessian matrices efficiently so that
384
+ incoherence-processed models can be tractably deployed.</p>
385
+ <p>One way to do this is by conjugating <span
386
+ class="math inline">\(W\)</span> and <span
387
+ class="math inline">\(H\)</span> by random orthogonal matrices. Let
388
+ <span class="math inline">\(U \in \mathbb{R}^{m \times m}\)</span>, and
389
+ <span class="math inline">\(V \in \mathbb{R}^{n \times n}\)</span> be
390
+ two random orthogonal matrices. If we assign <span
391
+ class="math inline">\(\tilde H \gets V H V^T\)</span> and <span
392
+ class="math inline">\(\tilde W \gets U W V^T\)</span>, <span
393
+ class="math inline">\(\tilde H\)</span> and <span
394
+ class="math inline">\(\tilde W\)</span> become incoherence processed
395
+ with high probability (see QuIP for proof). One can verify that this
396
+ transformation preserves the proxy objective as <span
397
+ class="math display">\[\operatorname{tr}(\tilde W \tilde H \tilde W^T) =
398
+ \operatorname{tr}((U W V^T) (V H V^T) (V W^T U^T)) =
399
+ \operatorname{tr}(WHW^T).\]</span></p>
400
+ <h4 id="randomized-hadamard-transformation-rht">Randomized Hadamard
401
+ Transformation (RHT)</h4>
402
+ <p>To construct <span class="math inline">\(U\)</span> and <span
403
+ class="math inline">\(V\)</span> from above, we use the RHT, which is
404
+ amenable to fast GPU implementation. In fact, one of the CUDA sample
405
+ kernels is the RHT. The RHT performs the multiplication <span
406
+ class="math inline">\(x \in \mathbb{R}^n \to \mathbb{H}Sx\)</span>,
407
+ where <span class="math inline">\(\mathbb{H}\)</span> is a <span
408
+ class="math inline">\(n \times n\)</span> Hadamard matrix (scaled by a
409
+ normalization factor) and <span class="math inline">\(S\)</span> is a
410
+ <span class="math inline">\(n\)</span> dimensional random sign vector.
411
+ The RHT concentrates the entries of <span
412
+ class="math inline">\(x\)</span> and thus results in incoherent matrices
413
+ through an <a
414
+ href="http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/lecture_2.1.pdf">application
415
+ of the Azuma-Hoeffding inequality</a>. Note that the Hadamard transform
416
+ can be computed more efficiently than a matrix multiplication via the
417
+ fast Walsh-Hadamard transform, which we employ directly for powers of 2.
418
+ To handle non power-of-two values of <span
419
+ class="math inline">\(n\)</span>, we perform the following
420
+ algorithm:</p>
421
+ <ol type="1">
422
+ <li>Let <span class="math inline">\(p\)</span> be the remaining
423
+ dimension and reshape <span class="math inline">\(Sx\)</span> into a
424
+ <span class="math inline">\(n/p \times p\)</span> matrix.</li>
425
+ <li>Perform the fast Walsh-Hadamard transform on <span
426
+ class="math inline">\(Sx\)</span> associated with dimension <span
427
+ class="math inline">\(n/p\)</span>.</li>
428
+ <li>Let <span class="math inline">\(\mathbb{H}&#39;\)</span> be a <span
429
+ class="math inline">\(p \times p\)</span> scaled Hadamard matrix. Apply
430
+ this Hadamard transform to <span class="math inline">\(Sx\)</span> on
431
+ the right, and reshape back.</li>
432
+ </ol>
433
+ <p>The only consequence of performing RHT is needing to store two sign
434
+ vectors per layer: <span class="math inline">\(S_U\)</span> and <span
435
+ class="math inline">\(S_V\)</span>. Since large language models have
436
+ large weight and Hessian matrices, this only increases the number of
437
+ bits per weight in practice by less than 0.01, or a negligible
438
+ amount.</p>
439
+ <h3 id="lattice-codebooks">Lattice Codebooks</h3>
440
+ <p>Incoherence processed weights are approximately Gaussian-distributed,
441
+ meaning that they are symmetric and “round.” To take advantage of this
442
+ “roundness,” we can use <span class="math inline">\(n\)</span>
443
+ dimensional codebooks that quantize <span
444
+ class="math inline">\(n\)</span> weights at once. Specifically, to
445
+ quantize <span class="math inline">\(x \in \mathbb{R}^n\)</span> to a
446
+ <span class="math inline">\(n\)</span> dimensional codebook <span
447
+ class="math inline">\(C \in \mathbb{R}^{m \times n}\)</span>, we round
448
+ <span class="math inline">\(x\)</span> to its nearest distance-wise
449
+ entry in <span class="math inline">\(C\)</span>. This requires <span
450
+ class="math inline">\(\log_2m\)</span> bits to represent which index in
451
+ <span class="math inline">\(C\)</span> to store, and results in <span
452
+ class="math inline">\(k = \frac{\log_2m}{n}\)</span> bits per
453
+ weight.</p>
454
+ <p>Increasing <span class="math inline">\(n\)</span> results in a
455
+ “rounder” codebook that reduces quantization error. However, note that
456
+ the number of bits per weight is determined by <em>both</em> the number
457
+ of entries in <span class="math inline">\(C\)</span> (m) as well as the
458
+ dimension of <span class="math inline">\(C\)</span> (n). To maintain a
459
+ set number of bits per weight, a linear increase in <span
460
+ class="math inline">\(n\)</span> requires an exponential increase in
461
+ <span class="math inline">\(m\)</span>. For example, a naively designed
462
+ 16-dimensional codebook requires <span
463
+ class="math inline">\(2^{32}\)</span> entries to achieve 2 bits per
464
+ weight, but performing lookups into a size <span
465
+ class="math inline">\(2^{32}\)</span> codebook is intractable. Thus, it
466
+ is important to design codebooks that both have relatively large <span
467
+ class="math inline">\(n\)</span> while being compressible so the actual
468
+ lookup happens with less than <span
469
+ class="math inline">\(2^{nk}\)</span> entries.</p>
470
+ <p>Geometric lattices are suitable bases for such codebooks as most
471
+ lattices have inherent symmetries and certain lattices achieve optimal
472
+ bin packing densities. For example, our E8P codebook based on the <span
473
+ class="math inline">\(E_8\)</span> lattice has <span
474
+ class="math inline">\(2^{16}\)</span> entries but only requires looking
475
+ up into a size <span class="math inline">\(2^8\)</span> codebook due to
476
+ symmetries inherent to the <span class="math inline">\(E_8\)</span>
477
+ lattice itself – more on this later. In QuIP#, we present the E8P
478
+ codebook based on the 8-dimensional <span
479
+ class="math inline">\(E_8\)</span> lattice. This lattice achieves the 8
480
+ dimensional kissing number, or the maximum number of unit balls touching
481
+ a central unit ball in 8 dimensions. Interestingly, Maryna Viazovska
482
+ recently won the Fields Medal in 2022 “for the proof that the <span
483
+ class="math inline">\(E_8\)</span> lattice provides the densest packing
484
+ of identical spheres in 8 dimensions.”</p>
485
+ <figure>
486
+ <img src="img/kissing2d.png"
487
+ alt="The 2D kissing number is 6, which is achieved by this packing configuration. Image from Wikipedia." />
488
+ <figcaption aria-hidden="true">The 2D kissing number is 6, which is
489
+ achieved by this packing configuration. Image from
490
+ Wikipedia.</figcaption>
491
+ </figure>
492
+ <h4 id="e8p-codebook">E8P Codebook</h4>
493
+ <p>Our E8P codebook is a version of the <span
494
+ class="math inline">\(E_8\)</span> lattice intersected with a ball,
495
+ padded (hence the P in E8P) to reach <span
496
+ class="math inline">\(2^{16}\)</span> entries. This results in <span
497
+ class="math inline">\(k = 16/8 = 2\)</span> bits per weight. The <span
498
+ class="math inline">\(E_8\)</span> lattice is composed of 8 dimensional
499
+ all-integer or all-half integer vectors whose sum is an even number. In
500
+ set-builder notation, <span class="math display">\[E_8 = \left\{x \mid x
501
+ \in \left(\mathbb{Z}^8 \cup \left(\mathbb{Z}+\frac{1}{2}\right)^8\right)
502
+ \land \sum_i x_i \equiv 0 \pmod 2\right\}.\]</span> Note that <span
503
+ class="math inline">\(E_8 + \frac{1}{4}\)</span> has the same packing
504
+ density of <span class="math inline">\(E_8\)</span> and is equivalent to
505
+ <span class="math inline">\(D_8 + \frac{1}{2} \pm \frac{1}{4}\)</span>,
506
+ where <span class="math inline">\(D_8\)</span> is the set of 8
507
+ dimensional all-integer vectors with even sum. Denote <span
508
+ class="math inline">\(D_8 + \frac{1}{2}\)</span> as <span
509
+ class="math inline">\(\hat{D_8}\)</span>; all elements in <span
510
+ class="math inline">\(\hat{D_8}\)</span> also have even sum parity.</p>
511
+ <p>Now, note that if we flip an even number of signs of an element in
512
+ <span class="math inline">\(\hat{D_8}\)</span>, we get another element
513
+ in <span class="math inline">\(\hat{D_8}\)</span>, whereas flipping an
514
+ odd number of signs results in something not in <span
515
+ class="math inline">\(\hat{D_8}\)</span>. This is due to <span
516
+ class="math inline">\(\hat{D_8}\)</span> being a half integer grid;
517
+ flipping a single half integer results in changing the sum parity. Since
518
+ <span class="math inline">\(\hat{D_8}\)</span> has 8 dimensions, there
519
+ are <span class="math inline">\(2^8/2 = 128\)</span> possible “even sign
520
+ flip” patterns to stay within <span
521
+ class="math inline">\(\hat{D_8}\)</span>. Conversely, there are also 128
522
+ “odd sign flip” patterns.</p>
523
+ <p>If we start from some “source codebook” <span
524
+ class="math inline">\(S\)</span> that is a subset of <span
525
+ class="math inline">\(|\hat{D_8}|\)</span>, where <span
526
+ class="math inline">\(|\cdot|\)</span> denotes the elementwise absolute
527
+ value, we can use 128 odd or even sign flips to generate a subset of
528
+ <span class="math inline">\(\hat{D_8}\)</span>. Each entry in <span
529
+ class="math inline">\(S\)</span> is either an odd or even number of
530
+ flips away from an entry in <span
531
+ class="math inline">\(\hat{D_8}\)</span>, but not both. Thus, given an
532
+ entry <span class="math inline">\(s \in S\)</span> and 7 out of the 8
533
+ sign flips, we can infer the last one from the parity of the 7 sign
534
+ flips and <span class="math inline">\(s\)</span>. This lets us use the
535
+ following bit pattern to store a 16-bit codeword in <span
536
+ class="math inline">\(E_8 + \frac{1}{4}\)</span>: 8 bits for the entry
537
+ index in <span class="math inline">\(S\)</span>, 7 bits for the sign
538
+ flips of the right 7 dimensions of the entry in <span
539
+ class="math inline">\(S\)</span>, and 1 bit to add or subtract <span
540
+ class="math inline">\(\frac{1}{4}\)</span>.</p>
541
+ <p>For example, if we had the codeword <code>0001010110010111</code>,
542
+ the first 8 bits <code>00010101</code> = 21 would indicate that we start
543
+ with the 21st entry in <span class="math inline">\(S\)</span>. In this
544
+ example, let this be the vector</p>
545
+ <p><span class="math display">\[\left\{\frac{1}{2}, \frac{1}{2},
546
+ \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2},
547
+ \frac{1}{2}\right\},\]</span></p>
548
+ <p>which is not in <span class="math inline">\(\hat{D_8}\)</span>. Thus,
549
+ <span class="math inline">\(s\)</span> requires an odd number of sign
550
+ flips to get into <span class="math inline">\(\hat{D_8}\)</span>. Then,
551
+ the next 7 bits <code>1001011</code> would indicate that we need to
552
+ negate the 1st, 2nd, 4th, and 7th from right bits. Since we need an odd
553
+ number of sign flips, the 8th from right bit is also a sign flip. The
554
+ sign-decoded vector is then</p>
555
+ <p><span class="math display">\[\left\{-\frac{1}{2}, -\frac{1}{2},
556
+ \frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2},
557
+ -\frac{1}{2}\right\},\]</span></p>
558
+ <p>which we can verify is in <span class="math inline">\(E_8\)</span>.
559
+ Finally, the last bit <code>1</code> indicates that we need to add <span
560
+ class="math inline">\(\frac{1}{4}\)</span>, so the final decoded vector
561
+ is</p>
562
+ <p><span class="math display">\[\left\{-\frac{1}{4}, -\frac{3}{4},
563
+ \frac{3}{4}, \frac{7}{4}, -\frac{1}{4}, \frac{3}{4}, -\frac{1}{4},
564
+ -\frac{1}{4}\right\},\]</span></p>
565
+ <p>which is in <span class="math inline">\(E_8 + \frac{1}{4}\)</span> as
566
+ desired.</p>
567
+ <p>Putting this all together, this lets us decode a size <span
568
+ class="math inline">\(2^{16}\)</span> codebook by looking up into only a
569
+ size <span class="math inline">\(2^8\)</span> codebook (namely <span
570
+ class="math inline">\(S\)</span>) and performing some operations. On
571
+ hardware, this means that we can store the smaller <span
572
+ class="math inline">\(2^8\)</span> codebook in local caches, avoiding
573
+ performance killing memory accesses that the larger <span
574
+ class="math inline">\(2^{16}\)</span> codebook would require. The
575
+ question remains then of how to choose <span
576
+ class="math inline">\(S\)</span>. In our implementation, we set <span
577
+ class="math inline">\(S\)</span> to be the 227 elements of <span
578
+ class="math inline">\(|\hat{D_8}|\)</span> with norm <span
579
+ class="math inline">\(\le \sqrt{10}\)</span> plus 29 elements from <span
580
+ class="math inline">\(|\hat{D_8}|\)</span> that have norm <span
581
+ class="math inline">\(\sqrt{12}\)</span>. The exact elements chosen can
582
+ be found in our code.</p>
583
+ <h4 id="codebook-errors">Codebook Errors</h4>
584
+ <p>To show the optimality of our lattice codebooks, we plotted the
585
+ minimum achievable elementwise MSE of quantizing a <span
586
+ class="math inline">\(n\)</span>-dimensional multivariate Gaussian to
587
+ various <span class="math inline">\(k\)</span> bit codebooks. To create
588
+ each codebook, we intersected a ball with the base lattice and increased
589
+ the radius of the ball to get more bits. The half integer codebooks are
590
+ formed from the <span class="math inline">\(n\)</span>-dimensional half
591
+ integer grids.</p>
592
+ <p>Specifically, each point in the graph below plots <span
593
+ class="math inline">\((k, y)\)</span> where</p>
594
+ <p><span class="math display">\[y = \min_{s \in \mathbb{R}^+}
595
+ \frac{1}{n}\left\|\mbox{quantize}\left(\frac{\mathcal{N}(0_n, I_n)}{s},
596
+ \mbox{codebook}\right)*s - \mathcal{N}(0_n, I_n)\right\|^2\]</span></p>
597
+ <figure>
598
+ <img src="img/lattice_err.png" title="Lattice Errors"
599
+ alt="Lowest element-wise mean squared error (MSE) achievable for quantizing a multivariate Gaussian to various codebooks. The E_8 lattice achieves the densest unit-sphere packing in 8 dimensions and our derivative codebooks have the lowest MSE." />
600
+ <figcaption aria-hidden="true">Lowest element-wise mean squared error
601
+ (MSE) achievable for quantizing a multivariate Gaussian to various
602
+ codebooks. The <span class="math inline">\(E_8\)</span> lattice achieves
603
+ the <a href="https://en.wikipedia.org/wiki/Kissing_number">densest
604
+ unit-sphere packing in 8 dimensions</a> and our derivative codebooks
605
+ have the lowest MSE.</figcaption>
606
+ </figure>
607
+ <p>The <span class="math inline">\(E_8\)</span>-based codebooks achieves
608
+ lower MSEs than all other codebooks, including those based on the <span
609
+ class="math inline">\(D_4\)</span> lattice that achieves the 4
610
+ dimensional kissing number. This figure also shows the importance of
611
+ having a large number of columns <span class="math inline">\(n\)</span>.
612
+ Increasing the number of columns decreases the error for the half
613
+ integer grid, as the resulting codebook is more “round.” Since the E8P
614
+ codebook is actually the union of two shifted codebooks, each of which
615
+ is a ball intersected with <span
616
+ class="math inline">\(\hat{D_8}\)</span>, it is not perfectly round.
617
+ This is reflected in the MSE plot, where it sits slightly above the
618
+ <span class="math inline">\(E_8\)</span> line. However, there does not
619
+ exist a <span class="math inline">\(E_8\)</span> codebook with exactly 2
620
+ bits, so E8P is still practically superior.</p>
621
+ <h3 id="results">Results</h3>
622
+ <p>Here, we present quantization results using QuIP# on Llama 1 and 2
623
+ models. All models were quantized using the Hadamard transform for
624
+ incoherence processing and a weight scale factor of roughly 0.9 times
625
+ the optimal scale for a multivariate Gaussian to compensate for
626
+ inter-layer interactions. Furthermore, all Llama 2 models were evaluated
627
+ using a context lenth of 4096 and all Llama 1 models were evaluated with
628
+ context length 2048; these numbers match the context length the models
629
+ were trained with. These and other models can be found in our <a
630
+ href="https://huggingface.co/relaxml">Hugging Face repository</a>.</p>
631
+ <p>The table below contains results for all Llama 1 and 2 models when
632
+ quantized to 2 bits using the E8P codebook. QuIP# achieves excellent
633
+ performance across all model sizes on both language modeling and zero
634
+ shot tasks. Furthermore, on the zero-shot tasks (ArcC, ArcE, BoolQ,
635
+ PiQA, WinoGrande), QuIP# models achieve near-native performance with
636
+ minimal degradation. Additional results are available <a
637
+ href="https://docs.google.com/spreadsheets/d/18woLrIBdVGUr9CuFDbK9pl_6QzEBl09hfnoe4Qkg7Hg/edit?usp=sharing">here</a>.</p>
638
+ <div style="margin-left: -6%;
639
+ margin-right: auto;
640
+ width: 112%;">
641
+ <table>
642
+ <caption>QuIP# results across all Llama 1 and 2 models. QuIP# achieves
643
+ near-native performance at 2 bits on language modeling (C4, Wiki) and
644
+ zero shot (ArcC, ArcE, BoolQ, PiQA, WinoGrande) tasks.</caption>
645
+ <colgroup>
646
+ <col style="width: 6%" />
647
+ <col style="width: 6%" />
648
+ <col style="width: 10%" />
649
+ <col style="width: 11%" />
650
+ <col style="width: 10%" />
651
+ <col style="width: 10%" />
652
+ <col style="width: 12%" />
653
+ <col style="width: 10%" />
654
+ <col style="width: 20%" />
655
+ </colgroup>
656
+ <thead>
657
+ <tr class="header">
658
+ <th style="text-align: center;">Model</th>
659
+ <th style="text-align: center;">Method</th>
660
+ <th style="text-align: center;">C4 <span
661
+ class="math inline">\(\downarrow\)</span></th>
662
+ <th style="text-align: center;">Wiki <span
663
+ class="math inline">\(\downarrow\)</span></th>
664
+ <th style="text-align: center;">ArcC <span
665
+ class="math inline">\(\uparrow\)</span></th>
666
+ <th style="text-align: center;">ArcE <span
667
+ class="math inline">\(\uparrow\)</span></th>
668
+ <th style="text-align: center;">BoolQ <span
669
+ class="math inline">\(\uparrow\)</span></th>
670
+ <th style="text-align: center;">PiQA <span
671
+ class="math inline">\(\uparrow\)</span></th>
672
+ <th style="text-align: center;">WinoGrande <span
673
+ class="math inline">\(\uparrow\)</span></th>
674
+ </tr>
675
+ </thead>
676
+ <tbody>
677
+ <tr class="odd">
678
+ <td style="text-align: center;">2-70B</td>
679
+ <td style="text-align: center;">fp16</td>
680
+ <td style="text-align: center;">5.533</td>
681
+ <td style="text-align: center;">3.120</td>
682
+ <td style="text-align: center;">0.480</td>
683
+ <td style="text-align: center;">0.597</td>
684
+ <td style="text-align: center;">0.766</td>
685
+ <td style="text-align: center;">0.809</td>
686
+ <td style="text-align: center;">0.768</td>
687
+ </tr>
688
+ <tr class="even">
689
+ <td style="text-align: center;">2-70B</td>
690
+ <td style="text-align: center;">QuIP#</td>
691
+ <td style="text-align: center;">6.535</td>
692
+ <td style="text-align: center;">4.156</td>
693
+ <td style="text-align: center;">0.469</td>
694
+ <td style="text-align: center;">0.595</td>
695
+ <td style="text-align: center;">0.795</td>
696
+ <td style="text-align: center;">0.785</td>
697
+ <td style="text-align: center;">0.740</td>
698
+ </tr>
699
+ <tr class="odd">
700
+ <td style="text-align: center;">2-13B</td>
701
+ <td style="text-align: center;">fp16</td>
702
+ <td style="text-align: center;">6.520</td>
703
+ <td style="text-align: center;">4.574</td>
704
+ <td style="text-align: center;">0.443</td>
705
+ <td style="text-align: center;">0.580</td>
706
+ <td style="text-align: center;">0.690</td>
707
+ <td style="text-align: center;">0.790</td>
708
+ <td style="text-align: center;">0.699</td>
709
+ </tr>
710
+ <tr class="even">
711
+ <td style="text-align: center;">2-13B</td>
712
+ <td style="text-align: center;">QuIP#</td>
713
+ <td style="text-align: center;">8.769</td>
714
+ <td style="text-align: center;">6.003</td>
715
+ <td style="text-align: center;">0.381</td>
716
+ <td style="text-align: center;">0.502</td>
717
+ <td style="text-align: center;">0.643</td>
718
+ <td style="text-align: center;">0.751</td>
719
+ <td style="text-align: center;">0.637</td>
720
+ </tr>
721
+ <tr class="odd">
722
+ <td style="text-align: center;">2-7B</td>
723
+ <td style="text-align: center;">fp16</td>
724
+ <td style="text-align: center;">7.036</td>
725
+ <td style="text-align: center;">5.116</td>
726
+ <td style="text-align: center;">0.406</td>
727
+ <td style="text-align: center;">0.535</td>
728
+ <td style="text-align: center;">0.710</td>
729
+ <td style="text-align: center;">0.769</td>
730
+ <td style="text-align: center;">0.670</td>
731
+ </tr>
732
+ <tr class="even">
733
+ <td style="text-align: center;">2-7B</td>
734
+ <td style="text-align: center;">QuIP#</td>
735
+ <td style="text-align: center;">12.208</td>
736
+ <td style="text-align: center;">8.201</td>
737
+ <td style="text-align: center;">0.346</td>
738
+ <td style="text-align: center;">0.454</td>
739
+ <td style="text-align: center;">0.647</td>
740
+ <td style="text-align: center;">0.726</td>
741
+ <td style="text-align: center;">0.618</td>
742
+ </tr>
743
+ <tr class="odd">
744
+ <td style="text-align: center;">1-65b</td>
745
+ <td style="text-align: center;">fp16</td>
746
+ <td style="text-align: center;">5.811</td>
747
+ <td style="text-align: center;">3.532</td>
748
+ <td style="text-align: center;">0.463</td>
749
+ <td style="text-align: center;">0.588</td>
750
+ <td style="text-align: center;">0.823</td>
751
+ <td style="text-align: center;">0.809</td>
752
+ <td style="text-align: center;">0.771</td>
753
+ </tr>
754
+ <tr class="even">
755
+ <td style="text-align: center;">1-65b</td>
756
+ <td style="text-align: center;">QuIP#</td>
757
+ <td style="text-align: center;">6.749</td>
758
+ <td style="text-align: center;">4.573</td>
759
+ <td style="text-align: center;">0.435</td>
760
+ <td style="text-align: center;">0.566</td>
761
+ <td style="text-align: center;">0.831</td>
762
+ <td style="text-align: center;">0.792</td>
763
+ <td style="text-align: center;">0.756</td>
764
+ </tr>
765
+ <tr class="odd">
766
+ <td style="text-align: center;">1-30B</td>
767
+ <td style="text-align: center;">fp16</td>
768
+ <td style="text-align: center;">6.130</td>
769
+ <td style="text-align: center;">4.101</td>
770
+ <td style="text-align: center;">0.453</td>
771
+ <td style="text-align: center;">0.590</td>
772
+ <td style="text-align: center;">0.684</td>
773
+ <td style="text-align: center;">0.801</td>
774
+ <td style="text-align: center;">0.728</td>
775
+ </tr>
776
+ <tr class="even">
777
+ <td style="text-align: center;">1-30B</td>
778
+ <td style="text-align: center;">QuIP#</td>
779
+ <td style="text-align: center;">7.465</td>
780
+ <td style="text-align: center;">5.311</td>
781
+ <td style="text-align: center;">0.422</td>
782
+ <td style="text-align: center;">0.537</td>
783
+ <td style="text-align: center;">0.659</td>
784
+ <td style="text-align: center;">0.776</td>
785
+ <td style="text-align: center;">0.714</td>
786
+ </tr>
787
+ <tr class="odd">
788
+ <td style="text-align: center;">1-13B</td>
789
+ <td style="text-align: center;">fp16</td>
790
+ <td style="text-align: center;">6.798</td>
791
+ <td style="text-align: center;">5.091</td>
792
+ <td style="text-align: center;">0.444</td>
793
+ <td style="text-align: center;">0.599</td>
794
+ <td style="text-align: center;">0.684</td>
795
+ <td style="text-align: center;">0.792</td>
796
+ <td style="text-align: center;">0.701</td>
797
+ </tr>
798
+ <tr class="even">
799
+ <td style="text-align: center;">1-13B</td>
800
+ <td style="text-align: center;">QuIP#</td>
801
+ <td style="text-align: center;">8.426</td>
802
+ <td style="text-align: center;">6.353</td>
803
+ <td style="text-align: center;">0.382</td>
804
+ <td style="text-align: center;">0.537</td>
805
+ <td style="text-align: center;">0.665</td>
806
+ <td style="text-align: center;">0.757</td>
807
+ <td style="text-align: center;">0.687</td>
808
+ </tr>
809
+ <tr class="odd">
810
+ <td style="text-align: center;">1-7B</td>
811
+ <td style="text-align: center;">fp16</td>
812
+ <td style="text-align: center;">7.343</td>
813
+ <td style="text-align: center;">5.677</td>
814
+ <td style="text-align: center;">0.415</td>
815
+ <td style="text-align: center;">0.525</td>
816
+ <td style="text-align: center;">0.731</td>
817
+ <td style="text-align: center;">0.774</td>
818
+ <td style="text-align: center;">0.670</td>
819
+ </tr>
820
+ <tr class="even">
821
+ <td style="text-align: center;">1-7B</td>
822
+ <td style="text-align: center;">QuIP#</td>
823
+ <td style="text-align: center;">10.927</td>
824
+ <td style="text-align: center;">8.146</td>
825
+ <td style="text-align: center;">0.347</td>
826
+ <td style="text-align: center;">0.471</td>
827
+ <td style="text-align: center;">0.673</td>
828
+ <td style="text-align: center;">0.724</td>
829
+ <td style="text-align: center;">0.621</td>
830
+ </tr>
831
+ </tbody>
832
+ </table>
833
+ </div>
834
+ </body>
835
+ </html>
quip-sharp/docs/index.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ mainfont: cambria
3
+ fontsize: 16pt
4
+ title: QuIP#
5
+ display: none
6
+ ---
7
+
8
+ <style>
9
+ body { max-width: 800px !important; text-align: justify; }
10
+ tbody {
11
+ border-top: none;
12
+ border-bottom: none;
13
+ }
14
+ header { height:0px;}
15
+ tr:nth-child(2n) {
16
+ background-color: #EEEEEE;
17
+ }
18
+ th {
19
+ background-color: #EEEEEE;
20
+ }
21
+ </style>
22
+
23
+
24
+ ## QuIP#: [QuIP](https://github.com/jerry-chee/QuIP) with Lattice Codebooks
25
+
26
+ [Albert Tseng*](https://tsengalb99.github.io), [Jerry Chee*](https://jerry-chee.github.io/), [Qingyao Sun](https://nalzok.github.io/), [Volodymyr Kuleshov](https://www.cs.cornell.edu/~kuleshov/), and [Chris De Sa](https://www.cs.cornell.edu/~cdesa/)
27
+
28
+ ---
29
+
30
+ ![](img/overview.svg)
31
+
32
+ Large language models (LLMs) exhibit amazing performance on a wide variety of tasks such as text modeling and code generation.
33
+ However, they are also very large.
34
+ For example Llama 2 70B has 70 billion parameters that require 140GB of memory to store in half precision.
35
+ This presents many challenges, such as needing multiple GPUs just to serve a single LLM.
36
+ To address these issues, researchers have developed compression methods that reduce the size of models without destroying performance.
37
+
38
+ One class of methods, post-training quantization, compresses trained model weights into lower precision formats to reduce memory requirements.
39
+ For example, quantizing a model from 16 bit to 2 bit precision would reduce the size of the model by 8x, meaning that even Llama 2 70B would fit on a single 24GB GPU.
40
+ In this work, we introduce **QuIP#**, which combines lattice codebooks with incoherence processing to create state-of-the-art 2 bit quantized models.
41
+ These two methods allow QuIP# to significantly close the gap between 2 bit quantized LLMs and unquantized 16 bit models.
42
+
43
+
44
+
45
+ <div style="margin-left: auto;
46
+ margin-right: auto;
47
+ width: 90%;">
48
+
49
+ | Method | Precision | Wiki $\downarrow$ | C4 $\downarrow$ | ArcE $\uparrow$ | PiQA $\uparrow$ |
50
+ |:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
51
+ | Native | 16 bit | 3.120 | 5.533 | 0.597 | 0.809 |
52
+ | OPTQ | 3 bit | 4.577 | 6.838 | 0.544 | **0.786** |
53
+ | OPTQ | 2 bit | 109.820 | 62.692 | 0.253 | 0.505 |
54
+ | QuIP | 2 bit | 5.574 | 8.268 | 0.544 | 0.751 |
55
+ | **QuIP#** | **2 bit** | **4.156** | **6.545** | **0.595** | 0.785 |
56
+
57
+ :Quantization results on Llama 2 70B. QuIP# achieves near-native performance at 2 bits, outperforming all other presented baselines.
58
+
59
+ </div>
60
+
61
+
62
+ <div style="color:steelblue; margin-left: -14%; margin-right: auto; width: 115%">
63
+ |||
64
+ |-:|--------------------------------------------------------------|
65
+ |<span style="font-size:72pt">☞</span>| **Our method, QuIP#, creates 2 bit LLMs that achieve near-native performance, a previously unseen result. We provide a [full suite of 2 bit Llama 1 and 2 models quantized using QuIP#](https://huggingface.co/relaxml), as well as a full codebase that allows users to quantize and deploy their own models. We also provide CUDA kernels that accelerate inference for QuIP# models. Our code is available [here](https://github.com/Cornell-RelaxML/quip-sharp).**|
66
+
67
+ </div>
68
+
69
+ ### Method Overview
70
+
71
+ QuIP# relies on two main components: *incoherence processing* and *lattice codebooks*.
72
+ Incoherence processing in the context of model quantization was introduced in QuIP.
73
+ While QuIP used a Kronecker product to perform incoherence processing, we introduce a Hadamard transform-based incoherence approach that is more amenable to fast GPU acceleration.
74
+
75
+ Incoherence-processed weights are approximately Gaussian-distributed, which means that they are suitable for quantizing with symmetric and “round” codebooks.
76
+ We introduce a new lattice codebook based on the $E_8$ lattice, which achieves the optimal 8 dimension unit ball packing density.
77
+ Our codebooks are specifically designed to be hardware-friendly by exploiting symmetries in these lattices.
78
+
79
+ ### Quantization Background
80
+
81
+ In QuIP#, we follow existing state-of-the-art post training quantization methods and round weights to minimize the per-layer "adaptive rounding" proxy objective
82
+
83
+ $$
84
+ \ell(\hat W)
85
+ = E_x \left[ \| (\hat W - W)x \|^2 \right]
86
+ = \operatorname{tr}\left(
87
+ (\hat W - W) H (\hat W - W)^T
88
+ \right).
89
+ $$
90
+
91
+ Here, $W \in \mathbb{R}^{m \times n}$ is the original weight matrix in a given layer, $\hat W = \mathbb{R}^{m \times n}$ are the quantized weights, $x \in \mathbb{R}^n$ is an input vector drawn uniformly at random from a calibration set, and $H$ is the second moment matrix of these vectors, interpreted as a proxy Hessian.
92
+ This intra-layer formulation makes quantization tracatable for large language models.
93
+ The original QuIP paper forumlated a class of adaptive rounding methods that used linear feedback to minimize $\ell$.
94
+ Within this class, the LDLQ rounding algorithm was shown to be optimal; we use LDLQ in QuIP# as well.
95
+
96
+
97
+ ### Incoherence Processing
98
+
99
+ The main insight of QuIP is that incoherent weight and hessian matrices result in improved quantization performance.
100
+ Informally, this means that weights that are even in magnitude with important rounding directions (the Hessians) that are not too large in any one coordinate are significantly easier to quantize without catastrophic error.
101
+ In some sense, incoherence processing can be viewed as a form of outlier suppression across weight and activation spaces.
102
+
103
+ <div style="background-color: #EEEEEE;">
104
+ **Definition.** *We say a symmetric Hessian matrix $H \in \mathbb{R}^{n \times n}$ is $\mu$-incoherent if it has an eigendecomposition $H = Q \Lambda Q^T$ such that for all $i$ and $j$, $|Q_{ij}| = |e_i^T Q e_j| \leq \mu / \sqrt{n}$.
105
+ By extension, we say a weight matrix $W \in \mathbb{R}^{m \times n}$ is $\mu$-incoherent if for all $i$ and $j$, $|W_{ij}| = |e_i^T W e_j| \leq \mu \|W\|_F / \sqrt{mn}$.*
106
+ </div>
107
+
108
+ Incoherence is an important property for quantizing models.
109
+ In QuIP, the incoherence condition on $H$ is required to show that LDLQ achieves a superior proxy loss to nearest and stochastic rounding through a spectral bound on $H$.
110
+ Therefore, it is important to be able to incoherence-process weight and hessian matrices efficiently so that incoherence-processed models can be tractably deployed.
111
+
112
+ One way to do this is by conjugating $W$ and $H$ by random orthogonal matrices.
113
+ Let $U \in \mathbb{R}^{m \times m}$, and $V \in \mathbb{R}^{n \times n}$ be two random orthogonal matrices.
114
+ If we assign $\tilde H \gets V H V^T$ and $\tilde W \gets U W V^T$, $\tilde H$ and $\tilde W$ become incoherence processed with high probability (see QuIP for proof).
115
+ One can verify that this transformation preserves the proxy objective as
116
+ $$\operatorname{tr}(\tilde W \tilde H \tilde W^T) = \operatorname{tr}((U W V^T) (V H V^T) (V W^T U^T)) = \operatorname{tr}(WHW^T).$$
117
+
118
+ #### Randomized Hadamard Transformation (RHT)
119
+
120
+ To construct $U$ and $V$ from above, we use the RHT, which is amenable to fast GPU implementation.
121
+ In fact, one of the CUDA sample kernels is the RHT.
122
+ The RHT performs the multiplication $x \in \mathbb{R}^n \to \mathbb{H}Sx$, where $\mathbb{H}$ is a $n \times n$ Hadamard matrix (scaled by a normalization factor) and $S$ is a $n$ dimensional random sign vector.
123
+ The RHT concentrates the entries of $x$ and thus results in incoherent matrices through an [application of the Azuma-Hoeffding inequality](http://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/lecture_2.1.pdf).
124
+ Note that the Hadamard transform can be computed more efficiently than a matrix multiplication via the fast Walsh-Hadamard transform, which we employ directly for powers of 2.
125
+ To handle non power-of-two values of $n$, we perform the following algorithm:
126
+
127
+ 1. Let $p$ be the remaining dimension and reshape $Sx$ into a $n/p \times p$ matrix.
128
+ 2. Perform the fast Walsh-Hadamard transform on $Sx$ associated with dimension $n/p$.
129
+ 3. Let $\mathbb{H}'$ be a $p \times p$ scaled Hadamard matrix. Apply this Hadamard transform to $Sx$ on the right, and reshape back.
130
+
131
+ The only consequence of performing RHT is needing to store two sign vectors per layer: $S_U$ and $S_V$.
132
+ Since large language models have large weight and Hessian matrices, this only increases the number of bits per weight in practice by less than 0.01, or a negligible amount.
133
+
134
+ ### Lattice Codebooks
135
+
136
+ Incoherence processed weights are approximately Gaussian-distributed, meaning that they are symmetric and “round.”
137
+ To take advantage of this “roundness,” we can use $n$ dimensional codebooks that quantize $n$ weights at once.
138
+ Specifically, to quantize $x \in \mathbb{R}^n$ to a $n$ dimensional codebook $C \in \mathbb{R}^{m \times n}$, we round $x$ to its nearest distance-wise entry in $C$.
139
+ This requires $\log_2m$ bits to represent which index in $C$ to store, and results in $k = \frac{\log_2m}{n}$ bits per weight.
140
+
141
+ Increasing $n$ results in a “rounder” codebook that reduces quantization error.
142
+ However, note that the number of bits per weight is determined by *both* the number of entries in $C$ (m) as well as the dimension of $C$ (n).
143
+ To maintain a set number of bits per weight, a linear increase in $n$ requires an exponential increase in $m$.
144
+ For example, a naively designed 16-dimensional codebook requires $2^{32}$ entries to achieve 2 bits per weight, but performing lookups into a size $2^{32}$ codebook is intractable.
145
+ Thus, it is important to design codebooks that both have relatively large $n$ while being compressible so the actual lookup happens with less than $2^{nk}$ entries.
146
+
147
+ Geometric lattices are suitable bases for such codebooks as most lattices have inherent symmetries and certain lattices achieve optimal bin packing densities.
148
+ For example, our E8P codebook based on the $E_8$ lattice has $2^{16}$ entries but only requires looking up into a size $2^8$ codebook due to symmetries inherent to the $E_8$ lattice itself -- more on this later.
149
+ In QuIP#, we present the E8P codebook based on the 8-dimensional $E_8$ lattice.
150
+ This lattice achieves the 8 dimensional kissing number, or the maximum number of unit balls touching a central unit ball in 8 dimensions.
151
+ Interestingly, Maryna Viazovska recently won the Fields Medal in 2022 “for the proof that the $E_8$ lattice provides the densest packing of identical spheres in 8 dimensions.”
152
+
153
+ ![The 2D kissing number is 6, which is achieved by this packing configuration. Image from Wikipedia.](img/kissing2d.png)
154
+
155
+ #### E8P Codebook
156
+
157
+ Our E8P codebook is a version of the $E_8$ lattice intersected with a ball, padded (hence the P in E8P) to reach $2^{16}$ entries.
158
+ This results in $k = 16/8 = 2$ bits per weight.
159
+ The $E_8$ lattice is composed of 8 dimensional all-integer or all-half integer vectors whose sum is an even number.
160
+ In set-builder notation, $$E_8 = \left\{x \mid x \in \left(\mathbb{Z}^8 \cup \left(\mathbb{Z}+\frac{1}{2}\right)^8\right) \land \sum_i x_i \equiv 0 \pmod 2\right\}.$$
161
+ Note that $E_8 + \frac{1}{4}$ has the same packing density of $E_8$ and is equivalent to $D_8 + \frac{1}{2} \pm \frac{1}{4}$, where $D_8$ is the set of 8 dimensional all-integer vectors with even sum.
162
+ Denote $D_8 + \frac{1}{2}$ as $\hat{D_8}$; all elements in $\hat{D_8}$ also have even sum parity.
163
+
164
+ Now, note that if we flip an even number of signs of an element in $\hat{D_8}$, we get another element in $\hat{D_8}$, whereas flipping an odd number of signs results in something not in $\hat{D_8}$.
165
+ This is due to $\hat{D_8}$ being a half integer grid; flipping a single half integer results in changing the sum parity.
166
+ Since $\hat{D_8}$ has 8 dimensions, there are $2^8/2 = 128$ possible "even sign flip" patterns to stay within $\hat{D_8}$.
167
+ Conversely, there are also 128 "odd sign flip" patterns.
168
+
169
+ If we start from some "source codebook" $S$ that is a subset of $|\hat{D_8}|$, where $|\cdot|$ denotes the elementwise absolute value, we can use 128 odd or even sign flips to generate a subset of $\hat{D_8}$.
170
+ Each entry in $S$ is either an odd or even number of flips away from an entry in $\hat{D_8}$, but not both.
171
+ Thus, given an entry $s \in S$ and 7 out of the 8 sign flips, we can infer the last one from the parity of the 7 sign flips and $s$.
172
+ This lets us use the following bit pattern to store a 16-bit codeword in $E_8 + \frac{1}{4}$: 8 bits for the entry index in $S$, 7 bits for the sign flips of the right 7 dimensions of the entry in $S$, and 1 bit to add or subtract $\frac{1}{4}$.
173
+
174
+ For example, if we had the codeword `0001010110010111`, the first 8 bits `00010101` = 21 would indicate that we start with the 21st entry in $S$.
175
+ In this example, let this be the vector
176
+
177
+ $$\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\},$$
178
+
179
+ which is not in $\hat{D_8}$.
180
+ Thus, $s$ requires an odd number of sign flips to get into $\hat{D_8}$.
181
+ Then, the next 7 bits `1001011` would indicate that we need to negate the 1st, 2nd, 4th, and 7th from right bits.
182
+ Since we need an odd number of sign flips, the 8th from right bit is also a sign flip.
183
+ The sign-decoded vector is then
184
+
185
+ $$\left\{-\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right\},$$
186
+
187
+ which we can verify is in $E_8$.
188
+ Finally, the last bit `1` indicates that we need to add $\frac{1}{4}$, so the final decoded vector is
189
+
190
+ $$\left\{-\frac{1}{4}, -\frac{3}{4}, \frac{3}{4}, \frac{7}{4}, -\frac{1}{4}, \frac{3}{4}, -\frac{1}{4}, -\frac{1}{4}\right\},$$
191
+
192
+ which is in $E_8 + \frac{1}{4}$ as desired.
193
+
194
+ Putting this all together, this lets us decode a size $2^{16}$ codebook by looking up into only a size $2^8$ codebook (namely $S$) and performing some operations.
195
+ On hardware, this means that we can store the smaller $2^8$ codebook in local caches, avoiding performance killing memory accesses that the larger $2^{16}$ codebook would require.
196
+ The question remains then of how to choose $S$.
197
+ In our implementation, we set $S$ to be the 227 elements of $|\hat{D_8}|$ with norm $\le \sqrt{10}$ plus 29 elements from $|\hat{D_8}|$ that have norm $\sqrt{12}$.
198
+ The exact elements chosen can be found in our code.
199
+
200
+
201
+ #### Codebook Errors
202
+
203
+ To show the optimality of our lattice codebooks, we plotted the minimum achievable elementwise MSE of quantizing a $n$-dimensional multivariate Gaussian to various $k$ bit codebooks.
204
+ To create each codebook, we intersected a ball with the base lattice and increased the radius of the ball to get more bits.
205
+ The half integer codebooks are formed from the $n$-dimensional half integer grids.
206
+
207
+ Specifically, each point in the graph below plots $(k, y)$ where
208
+
209
+ $$y = \min_{s \in \mathbb{R}^+} \frac{1}{n}\left\|\mbox{quantize}\left(\frac{\mathcal{N}(0_n, I_n)}{s}, \mbox{codebook}\right)*s - \mathcal{N}(0_n, I_n)\right\|^2$$
210
+
211
+ [lattice_err]: img/lattice_err.png "Lattice Errors"
212
+ ![Lowest element-wise mean squared error (MSE) achievable for quantizing a multivariate Gaussian to various codebooks. The $E_8$ lattice achieves the [densest unit-sphere packing in 8 dimensions](https://en.wikipedia.org/wiki/Kissing_number) and our derivative codebooks have the lowest MSE.][lattice_err]
213
+
214
+ The $E_8$-based codebooks achieves lower MSEs than all other codebooks, including those based on the $D_4$ lattice that achieves the 4 dimensional kissing number.
215
+ This figure also shows the importance of having a large number of columns $n$.
216
+ Increasing the number of columns decreases the error for the half integer grid, as the resulting codebook is more "round."
217
+ Since the E8P codebook is actually the union of two shifted codebooks, each of which is a ball intersected with $\hat{D_8}$, it is not perfectly round.
218
+ This is reflected in the MSE plot, where it sits slightly above the $E_8$ line.
219
+ However, there does not exist a $E_8$ codebook with exactly 2 bits, so E8P is still practically superior.
220
+
221
+ ### Results
222
+
223
+ Here, we present quantization results using QuIP# on Llama 1 and 2 models.
224
+ All models were quantized using the Hadamard transform for incoherence processing and a weight scale factor of roughly 0.9 times the optimal scale for a multivariate Gaussian to compensate for inter-layer interactions.
225
+ Furthermore, all Llama 2 models were evaluated using a context lenth of 4096 and all Llama 1 models were evaluated with context length 2048; these numbers match the context length the models were trained with.
226
+ These and other models can be found in our [Hugging Face repository](https://huggingface.co/relaxml).
227
+
228
+ The table below contains results for all Llama 1 and 2 models when quantized to 2 bits using the E8P codebook.
229
+ QuIP# achieves excellent performance across all model sizes on both language modeling and zero shot tasks.
230
+ Furthermore, on the zero-shot tasks (ArcC, ArcE, BoolQ, PiQA, WinoGrande), QuIP# models achieve near-native performance with minimal degradation.
231
+ Additional results are available [here](https://docs.google.com/spreadsheets/d/18woLrIBdVGUr9CuFDbK9pl_6QzEBl09hfnoe4Qkg7Hg/edit?usp=sharing).
232
+
233
+
234
+ <div style="margin-left: -6%;
235
+ margin-right: auto;
236
+ width: 112%;">
237
+ | Model | Method | C4 $\downarrow$ | Wiki $\downarrow$ | ArcC $\uparrow$ | ArcE $\uparrow$ | BoolQ $\uparrow$ | PiQA $\uparrow$ | WinoGrande $\uparrow$ |
238
+ |:---------:|:---------:|:---------------:|:-----------------:|:---------------:|:---------------:|:-------------------:|:---------------:|:-------------------------------:|
239
+ | 2-70B | fp16 | 5.533 | 3.120 | 0.480 | 0.597 | 0.766 | 0.809 | 0.768 |
240
+ | 2-70B | QuIP# | 6.535 | 4.156 | 0.469 | 0.595 | 0.795 | 0.785 | 0.740 |
241
+ | 2-13B | fp16 | 6.520 | 4.574 | 0.443 | 0.580 | 0.690 | 0.790 | 0.699 |
242
+ | 2-13B | QuIP# | 8.769 | 6.003 | 0.381 | 0.502 | 0.643 | 0.751 | 0.637 |
243
+ | 2-7B | fp16 | 7.036 | 5.116 | 0.406 | 0.535 | 0.710 | 0.769 | 0.670 |
244
+ | 2-7B | QuIP# | 12.208 | 8.201 | 0.346 | 0.454 | 0.647 | 0.726 | 0.618 |
245
+ | 1-65b | fp16 | 5.811 | 3.532 | 0.463 | 0.588 | 0.823 | 0.809 | 0.771 |
246
+ | 1-65b | QuIP# | 6.749 | 4.573 | 0.435 | 0.566 | 0.831 | 0.792 | 0.756 |
247
+ | 1-30B | fp16 | 6.130 | 4.101 | 0.453 | 0.590 | 0.684 | 0.801 | 0.728 |
248
+ | 1-30B | QuIP# | 7.465 | 5.311 | 0.422 | 0.537 | 0.659 | 0.776 | 0.714 |
249
+ | 1-13B | fp16 | 6.798 | 5.091 | 0.444 | 0.599 | 0.684 | 0.792 | 0.701 |
250
+ | 1-13B | QuIP# | 8.426 | 6.353 | 0.382 | 0.537 | 0.665 | 0.757 | 0.687 |
251
+ | 1-7B | fp16 | 7.343 | 5.677 | 0.415 | 0.525 | 0.731 | 0.774 | 0.670 |
252
+ | 1-7B | QuIP# | 10.927 | 8.146 | 0.347 | 0.471 | 0.673 | 0.724 | 0.621 |
253
+ :QuIP# results across all Llama 1 and 2 models. QuIP# achieves near-native performance at 2 bits on language modeling (C4, Wiki) and zero shot (ArcC, ArcE, BoolQ, PiQA, WinoGrande) tasks.
254
+ </div>
quip-sharp/eval_ppl.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import math
3
+ import json
4
+ import argparse
5
+ import torch
6
+ import datasets
7
+ from lib.utils import gptq_data_utils
8
+ from lib.utils.unsafe_import import model_from_hf_path
9
+ import random
10
+ import glog
11
+
12
+ from tqdm import tqdm
13
+
14
+ torch.set_grad_enabled(False)
15
+
16
+ parser = argparse.ArgumentParser()
17
+ parser.add_argument('--seed', default=0, type=int)
18
+ parser.add_argument('--hf_path', default='hfized/quantized_hada_70b', type=str)
19
+ parser.add_argument('--seqlen', default=4096, type=int)
20
+ parser.add_argument('--no_use_cuda_graph', action='store_true')
21
+ parser.add_argument('--no_use_flash_attn', action='store_true')
22
+
23
+
24
+ def main(args):
25
+ datasets = ['wikitext2', 'c4']
26
+ model, model_str = model_from_hf_path(args.hf_path,
27
+ use_cuda_graph=not args.no_use_cuda_graph,
28
+ use_flash_attn=not args.no_use_flash_attn)
29
+
30
+ for dataset in datasets:
31
+ input_tok = gptq_data_utils.get_test_tokens(dataset,
32
+ seed=args.seed,
33
+ seqlen=args.seqlen,
34
+ model=model_str)
35
+ nsamples = input_tok.numel() // args.seqlen
36
+ input_tok = input_tok[0, :(args.seqlen * nsamples)].view(nsamples, args.seqlen)
37
+
38
+ if not args.no_use_cuda_graph:
39
+ model.reset()
40
+
41
+ loss_fct = torch.nn.CrossEntropyLoss().cuda()
42
+ acc_loss = 0.0
43
+ progress = tqdm(range(nsamples))
44
+ for ii in progress:
45
+ input = input_tok[ii, :].cuda().view(1, -1)
46
+ output = model(input,
47
+ use_cache=False,
48
+ output_hidden_states=False,
49
+ output_attentions=False)[0]
50
+ shift_logits = output[:, :-1, :].contiguous()
51
+ shift_labels = input[:, 1:]
52
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
53
+ acc_loss += loss.item()
54
+ progress.set_description(f"avg_loss = {acc_loss/(ii+1)}")
55
+
56
+ avg_loss = acc_loss / nsamples
57
+
58
+ ppl = torch.exp(torch.tensor(avg_loss)).item()
59
+ glog.info(f'{dataset} perplexity: {ppl}')
60
+
61
+
62
+ if __name__ == '__main__':
63
+ torch.set_grad_enabled(False)
64
+ args = parser.parse_args()
65
+ random.seed(args.seed)
66
+ torch.random.manual_seed(args.seed)
67
+ main(args)
quip-sharp/eval_zeroshot.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ import argparse
4
+ import torch
5
+ import datasets
6
+ from transformers import AutoTokenizer
7
+ import random
8
+ import glog
9
+
10
+ from lib.utils import LMEvalAdaptor
11
+ from lib.utils.unsafe_import import model_from_hf_path
12
+ from lm_eval import evaluator, tasks
13
+
14
+ parser = argparse.ArgumentParser()
15
+ parser.add_argument('--seed', default=0, type=int)
16
+ parser.add_argument('--hf_path', default='hfized/quantized_hada_70b', type=str)
17
+ parser.add_argument('--batch_size', type=int, default=1, help='batch size')
18
+ parser.add_argument("--tasks", type=str)
19
+ parser.add_argument("--output_path", default=None, type=str)
20
+ parser.add_argument('--num_fewshot', type=int, default=0)
21
+ parser.add_argument('--no_use_cuda_graph', action='store_true')
22
+ parser.add_argument('--no_use_flash_attn', action='store_true')
23
+
24
+
25
+ def main(args):
26
+ model, model_str = model_from_hf_path(args.hf_path,
27
+ use_cuda_graph=False,
28
+ use_flash_attn=not args.no_use_flash_attn)
29
+ tokenizer = AutoTokenizer.from_pretrained(model_str)
30
+
31
+ glog.info('loaded model!')
32
+ tokenizer.pad_token = tokenizer.eos_token
33
+
34
+ task_names = args.tasks.split(",")
35
+
36
+ lm_eval_model = LMEvalAdaptor(model_str, model, tokenizer, args.batch_size)
37
+ results = evaluator.simple_evaluate(
38
+ model=lm_eval_model,
39
+ tasks=task_names,
40
+ batch_size=args.batch_size,
41
+ no_cache=True,
42
+ num_fewshot=args.num_fewshot,
43
+ )
44
+
45
+ print(evaluator.make_table(results))
46
+
47
+ if args.output_path is not None:
48
+ os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
49
+ # otherwise cannot save
50
+ results["config"]["model"] = args.hf_path
51
+ with open(args.output_path, "w") as f:
52
+ json.dump(results, f, indent=2)
53
+
54
+
55
+ if __name__ == '__main__':
56
+ torch.set_grad_enabled(False)
57
+ args = parser.parse_args()
58
+ random.seed(args.seed)
59
+ torch.random.manual_seed(args.seed)
60
+ main(args)
quip-sharp/gen_speed.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import glog
4
+ import torch
5
+ from torch.profiler import profile, record_function, ProfilerActivity
6
+ from transformers import AutoTokenizer
7
+ from lib.utils.unsafe_import import model_from_hf_path
8
+ import time
9
+
10
+ torch.set_grad_enabled(False)
11
+
12
+ parser = argparse.ArgumentParser()
13
+ parser.add_argument('--hf_path', default='meta-llama/Llama-2-70b-hf', type=str)
14
+ parser.add_argument('--batch_size', default=1, type=int)
15
+ parser.add_argument('--seqlen', default=1, type=int)
16
+ parser.add_argument('--samples', default=100, type=int)
17
+ parser.add_argument('--no_use_cuda_graph', action='store_true')
18
+ parser.add_argument('--no_use_flash_attn', action='store_true')
19
+
20
+
21
+ def main(args):
22
+ model, model_str = model_from_hf_path(args.hf_path,
23
+ use_cuda_graph=not args.no_use_cuda_graph,
24
+ use_flash_attn=not args.no_use_flash_attn)
25
+ tokenizer = AutoTokenizer.from_pretrained(model_str)
26
+
27
+ prompt = 'It is a truth universally acknowledged that'
28
+ inputs = tokenizer(prompt, return_tensors='pt')
29
+ token = inputs['input_ids'][0:1, 0:1].cuda().repeat(args.batch_size, args.seqlen)
30
+ model(token, use_cache=False)
31
+
32
+ torch.cuda.synchronize()
33
+ start = time.time()
34
+ for _ in range(args.samples):
35
+ model(token, use_cache=False)
36
+ torch.cuda.synchronize()
37
+ end = time.time()
38
+ print('TIME', (end - start) / args.samples)
39
+
40
+
41
+ if __name__ == '__main__':
42
+ torch.set_grad_enabled(False)
43
+ torch.manual_seed(0)
44
+ args = parser.parse_args()
45
+ main(args)
quip-sharp/hessian_offline_llama.py ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import datetime
3
+ import random
4
+ import argparse
5
+ from copy import deepcopy
6
+ from tqdm import tqdm
7
+
8
+ os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:512"
9
+
10
+ import numpy
11
+ import torch
12
+ from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerFast
13
+ from datasets import load_dataset
14
+
15
+ import torch.multiprocessing as mp
16
+
17
+ # import data_utils
18
+ from lib import utils
19
+
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument('--seed', default=0, type=int)
22
+ parser.add_argument('--batch_size', default=2, type=int)
23
+ parser.add_argument('--devset_size', default=256, type=int)
24
+ parser.add_argument('--ctx_size', default=4096, type=int)
25
+ parser.add_argument('--base_model', default='meta-llama/Llama-2-70b-hf', type=str)
26
+ parser.add_argument('--save_path', default='hessians/llama2_70b', type=str)
27
+ parser.add_argument('--scratch_path', default=None, type=str)
28
+ parser.add_argument('--chunk_size', default=256, type=int)
29
+ parser.add_argument('--async_copy_speed', default=-1, type=int)
30
+ parser.add_argument('--act_save_rate', default=4, type=int)
31
+ parser.add_argument('--save_activations', action='store_true')
32
+ parser.add_argument('--sample_proc', default=4, type=int)
33
+
34
+
35
+ def move_fn(in_q, async_copy_speed):
36
+ # async copy to avoid slow disk
37
+ while True:
38
+ item = in_q.get()
39
+ if item is None:
40
+ return
41
+ src, tgt = item
42
+ if async_copy_speed > 0:
43
+ os.system(f'rsync --bwlimit={async_copy_speed} {src} {tgt}')
44
+ else:
45
+ os.system(f'rsync {src} {tgt}')
46
+ os.system(f'rm {src}')
47
+ print(f'moved {src} to {tgt}')
48
+
49
+
50
+ def forward_layer(layer, position_ids, attention_mask, bs, device, in_q, out_q):
51
+ torch.set_grad_enabled(False)
52
+ layer = layer.to(device)
53
+ position_ids = position_ids.to(device)
54
+ attention_mask = attention_mask.to(device)
55
+ done_qkv = utils.register_H_hook(layer.self_attn.q_proj, device)
56
+ done_o = utils.register_H_hook(layer.self_attn.o_proj, device)
57
+ done_up = utils.register_H_hook(layer.mlp.up_proj, device)
58
+ done_down = utils.register_H_hook(layer.mlp.down_proj, device)
59
+
60
+ while True:
61
+ dev_emb = in_q.get()
62
+ if dev_emb is None:
63
+ layer = layer.cpu()
64
+ position_ids = position_ids.cpu()
65
+ attention_mask = attention_mask.cpu()
66
+ out_q.put({'qkv': done_qkv(), 'o': done_o(), 'up': done_up(), 'down': done_down()})
67
+ return
68
+
69
+ assert len(dev_emb) % bs == 0
70
+ for i in range(len(dev_emb) // bs):
71
+ dev_emb[i * bs:(i + 1) * bs] = layer(dev_emb[i * bs:(i + 1) * bs].to(device),
72
+ position_ids=position_ids,
73
+ attention_mask=attention_mask,
74
+ use_cache=False,
75
+ output_attentions=False)[0].cpu()
76
+
77
+
78
+ def accumulate(in_q, move_q, ngpus, args, transformer_layer_index):
79
+ Hs = {}
80
+ mus = {}
81
+ cts = {}
82
+
83
+ for i in range(ngpus):
84
+ out = in_q.get()
85
+ if i == 0:
86
+ for key in out:
87
+ Hs[key] = torch.zeros(out[key][0].shape, dtype=out[key][0].dtype)
88
+ mus[key] = torch.zeros(out[key][1].shape, dtype=out[key][1].dtype)
89
+ cts[key] = 0
90
+ for key in out:
91
+ Hs[key].add_(out[key][0])
92
+ mus[key].add_(out[key][1])
93
+ cts[key] += out[key][2]
94
+
95
+ keys = list(Hs.keys())
96
+
97
+ for key in Hs:
98
+ mus[key].div_(cts[key])
99
+ Hs[key].div_(cts[key])
100
+ Hs[key].addmm_(-mus[key].unsqueeze(-1), mus[key].unsqueeze(0))
101
+ save_path = f"{args.scratch_path}/{transformer_layer_index}_{key}.pt" if args.scratch_path is not None else f"{args.save_path}/{transformer_layer_index}_{key}.pt"
102
+ torch.save(
103
+ {
104
+ 'flatH': utils.sym_to_flat(Hs[key].to(torch.float32)),
105
+ 'mu': mus[key].to(torch.float32),
106
+ 'n': Hs[key].shape[0],
107
+ 'ct': cts[key]
108
+ }, save_path)
109
+ if args.scratch_path is not None:
110
+ move_q.put((f"{args.scratch_path}/{transformer_layer_index}_{key}.pt",
111
+ f"{args.save_path}/{transformer_layer_index}_{key}.pt"))
112
+
113
+ del Hs, mus, cts, out
114
+
115
+
116
+ def main(args):
117
+ print("loading model...")
118
+ model = AutoModelForCausalLM.from_pretrained(args.base_model,
119
+ torch_dtype="auto",
120
+ low_cpu_mem_usage=True)
121
+ print("loaded model!")
122
+ tokenizer = AutoTokenizer.from_pretrained(args.base_model, use_fast=True)
123
+ tokenizer.pad_token = tokenizer.eos_token
124
+
125
+ if os.path.isfile(f"{args.save_path}/dev_activations.pt"):
126
+ print("loading cached dataset...")
127
+ loaded_dev_activations = torch.load(f"{args.save_path}/dev_activations.pt")
128
+ after_layer = loaded_dev_activations['after_layer']
129
+ dev_emb = loaded_dev_activations['dev_emb']
130
+ print(f"loaded cached dataset from {loaded_dev_activations['timestamp']}")
131
+ else:
132
+ print("loading dataset...")
133
+ dataset = load_dataset("togethercomputer/RedPajama-Data-1T-Sample", split="train")
134
+ devset = utils.sample_devset(dataset,
135
+ tokenizer,
136
+ args.devset_size,
137
+ args.ctx_size,
138
+ nproc=args.sample_proc)
139
+ dev_emb = model.model.embed_tokens(devset)
140
+ after_layer = -1
141
+ print("loaded dataset!")
142
+
143
+ print(f"dev_emb dtype: {dev_emb.dtype}")
144
+ dev_emb.share_memory_()
145
+
146
+ position_ids = torch.arange(args.ctx_size, dtype=torch.int64)[None, :] + \
147
+ torch.zeros(args.batch_size, args.ctx_size, dtype=torch.int64)
148
+ if hasattr(model.config, 'sliding_window'):
149
+ # mistral models
150
+ attention_mask = model.model._prepare_decoder_attention_mask(
151
+ torch.ones(args.batch_size, args.ctx_size,
152
+ dtype=torch.bool), (args.batch_size, args.ctx_size),
153
+ dev_emb[0:args.batch_size, :, :],
154
+ 0,
155
+ sliding_window=model.config.sliding_window)
156
+ else:
157
+ attention_mask = model.model._prepare_decoder_attention_mask(
158
+ torch.ones(args.batch_size, args.ctx_size, dtype=torch.bool),
159
+ (args.batch_size, args.ctx_size), dev_emb[0:args.batch_size, :, :], 0)
160
+
161
+ if args.scratch_path is not None:
162
+ move_q = mp.Queue()
163
+ move_p = mp.Process(target=move_fn, args=(move_q, args.async_copy_speed))
164
+ move_p.start()
165
+ else:
166
+ move_q = None
167
+
168
+ for transformer_layer_index in range(len(model.model.layers)):
169
+ if (transformer_layer_index <= after_layer):
170
+ print(
171
+ f"skipping layer {transformer_layer_index} because it is before cached activations at layer {after_layer}"
172
+ )
173
+ continue
174
+
175
+ transformer_layer = model.model.layers[transformer_layer_index]
176
+ # check that there are four layers, as expected
177
+ assert (len([m for m in transformer_layer.modules()
178
+ if isinstance(m, torch.nn.Linear)]) == 7)
179
+
180
+ chunk_size = min(args.chunk_size, len(dev_emb))
181
+ ngpus = min(torch.cuda.device_count(), len(dev_emb) // chunk_size)
182
+
183
+ manager = mp.get_context('spawn').Manager()
184
+ in_q = manager.Queue()
185
+ out_q = manager.Queue()
186
+
187
+ accumulate_proc = mp.Process(target=accumulate,
188
+ args=(out_q, move_q, ngpus, args, transformer_layer_index))
189
+ accumulate_proc.start()
190
+
191
+ forward_procs = []
192
+ for i in range(ngpus):
193
+ p = mp.Process(target=forward_layer,
194
+ args=(transformer_layer, position_ids, attention_mask, args.batch_size,
195
+ i, in_q, out_q))
196
+ p.start()
197
+ forward_procs.append(p)
198
+
199
+ assert len(dev_emb) % args.batch_size == 0 and chunk_size % args.batch_size == 0
200
+ i = 0
201
+ while i < len(dev_emb):
202
+ next = min(i + chunk_size, len(dev_emb))
203
+ in_q.put(dev_emb[i:next])
204
+ i = next
205
+
206
+ for i in range(ngpus):
207
+ in_q.put(None)
208
+
209
+ for p in forward_procs:
210
+ p.join()
211
+
212
+ accumulate_proc.join()
213
+
214
+ transformer_layer.cpu()
215
+ model.model.layers[transformer_layer_index] = None
216
+ utils.clean()
217
+
218
+ if args.save_activations and (
219
+ transformer_layer_index % args.act_save_rate == 0 or \
220
+ transformer_layer_index == len(model.model.layers) - 1):
221
+ if args.scratch_path is not None:
222
+ if os.path.exists(f'{args.scratch_path}/dev_activations.pt'):
223
+ print('not saving layer since disk is too slow')
224
+ else:
225
+ torch.save(
226
+ {
227
+ 'dev_emb': dev_emb,
228
+ 'after_layer': transformer_layer_index,
229
+ 'timestamp': str(datetime.datetime.now())
230
+ }, f'{args.scratch_path}/dev_activations.pt')
231
+ move_q.put((f'{args.scratch_path}/dev_activations.pt',
232
+ f'{args.save_path}/dev_activations.pt'))
233
+ else:
234
+ torch.save(
235
+ {
236
+ 'dev_emb': dev_emb,
237
+ 'after_layer': transformer_layer_index,
238
+ 'timestamp': str(datetime.datetime.now())
239
+ }, f'{args.save_path}/dev_activations.pt')
240
+
241
+ print(f"done processing layer {transformer_layer_index}")
242
+
243
+ if args.scratch_path is not None:
244
+ move_q.put(None)
245
+ move_p.join()
246
+
247
+
248
+ if __name__ == "__main__":
249
+ mp.set_start_method('spawn')
250
+ torch.set_grad_enabled(False)
251
+ args = parser.parse_args()
252
+ torch.manual_seed(args.seed)
253
+ random.seed(args.seed)
254
+ numpy.random.seed(args.seed)
255
+ os.makedirs(args.save_path, exist_ok=True)
256
+ main(args)
quip-sharp/hfize_llama.py ADDED
@@ -0,0 +1,177 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import glog
4
+ import torch
5
+ from transformers import AutoTokenizer
6
+ from model.version import MODEL_VERSION
7
+ from model.llama import LlamaForCausalLM as llama_fuse
8
+ from model.llama_nofuse import LlamaForCausalLM as llama_nofuse
9
+ from model.mistral import MistralForCausalLM
10
+ from lib import codebook
11
+ from lib.utils.unsafe_import import model_from_hf_path
12
+ import time
13
+
14
+ torch.set_grad_enabled(False)
15
+
16
+ parser = argparse.ArgumentParser()
17
+ parser.add_argument('--quantized_path', type=str)
18
+ parser.add_argument('--hf_output_path', type=str)
19
+
20
+
21
+ def unpack_quip(module, saved_layer, codebook_id, codesz):
22
+ (m, n) = saved_layer['Qidxs'].shape
23
+ if codebook_id in codebook.cache_permute_set:
24
+ module.Qidxs.copy_(saved_layer['Qidxs'].view(m, n // codesz,
25
+ codesz).permute(1, 0,
26
+ 2).reshape(m, n).contiguous())
27
+ else:
28
+ module.Qidxs.copy_(saved_layer['Qidxs'])
29
+
30
+ if module.rank > 0:
31
+ module.A.copy_(saved_layer['A'])
32
+ module.B.copy_(saved_layer['B'])
33
+ module.SU.copy_(saved_layer['SU'])
34
+ module.SV.copy_(saved_layer['SV'])
35
+ module.Wscale.copy_(saved_layer['Wscale'])
36
+ if module.rescale_WH:
37
+ module.scaleWH.copy_(saved_layer['scaleWH'])
38
+
39
+ module.codebook_id.copy_(codebook_id)
40
+
41
+
42
+ def main(args):
43
+ assert os.path.exists(args.quantized_path)
44
+ saved_config = torch.load(os.path.join(args.quantized_path, 'config.pt'))
45
+ model_config = saved_config['model_config']
46
+
47
+ codebook_id = codebook.get_id(model_config.quip_params['codebook'])
48
+ codesz = model_config.quip_params['codesz']
49
+
50
+ tokenizer = AutoTokenizer.from_pretrained(model_config._name_or_path)
51
+
52
+ model_type = model_config.model_type
53
+ fused = model_config.quip_params.get('fused', True)
54
+ model_config.quip_params['model_version'] = MODEL_VERSION
55
+
56
+ if model_type == 'llama':
57
+ model_cls = llama_fuse if fused else llama_nofuse
58
+ elif model_type == 'mistral':
59
+ model_cls = MistralForCausalLM
60
+ else:
61
+ raise Exception
62
+
63
+ model = model_cls.from_pretrained(model_config._name_or_path,
64
+ torch_dtype='auto',
65
+ low_cpu_mem_usage=True,
66
+ config=model_config).half()
67
+
68
+ for ii in range(len(model.model.layers)):
69
+ glog.info(f'updating layer {ii}')
70
+
71
+ layer = model.model.layers[ii]
72
+ cpu = torch.device('cpu')
73
+
74
+ if fused:
75
+ glog.info(f'loading layer {ii} qkv')
76
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_qkv.pt', map_location=cpu)
77
+ layer.self_attn.q_scale.copy_(saved_layer['W_q_scale'])
78
+ layer.self_attn.k_scale.copy_(saved_layer['W_k_scale'])
79
+ layer.self_attn.v_scale.copy_(saved_layer['W_v_scale'])
80
+ unpack_quip(layer.self_attn.qkv_proj, saved_layer, codebook_id, codesz)
81
+
82
+ glog.info(f'loading layer {ii} up')
83
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_up.pt', map_location=cpu)
84
+ layer.mlp.up_scale.copy_(saved_layer['W_up_scale'])
85
+ layer.mlp.gate_scale.copy_(saved_layer['W_gate_scale'])
86
+ unpack_quip(layer.mlp.upgate_proj, saved_layer, codebook_id, codesz)
87
+
88
+ glog.info(f'loading layer {ii} o')
89
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_o.pt', map_location=cpu)
90
+ layer.self_attn.o_scale.copy_(saved_layer['W_o_scale'])
91
+ unpack_quip(layer.self_attn.o_proj, saved_layer, codebook_id, codesz)
92
+
93
+ glog.info(f'loading layer {ii} down')
94
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_down.pt', map_location=cpu)
95
+ layer.mlp.down_scale.copy_(saved_layer['W_down_scale'])
96
+
97
+ if model_config.quip_params['outlier_channel_split']:
98
+ layer.mlp.down_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
99
+
100
+ unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)
101
+
102
+ else:
103
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_q.pt', map_location=cpu)
104
+ layer.self_attn.q_scale.copy_(saved_layer['W_scale'])
105
+ if model_config.quip_params['outlier_channel_split']:
106
+ layer.self_attn.q_proj.ocs_dupe_inds.copy_(
107
+ torch.tensor(saved_layer['ocs_dupe_inds']))
108
+ unpack_quip(layer.self_attn.q_proj, saved_layer, codebook_id, codesz)
109
+
110
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_k.pt', map_location=cpu)
111
+ layer.self_attn.k_scale.copy_(saved_layer['W_scale'])
112
+ if model_config.quip_params['outlier_channel_split']:
113
+ layer.self_attn.k_proj.ocs_dupe_inds.copy_(
114
+ torch.tensor(saved_layer['ocs_dupe_inds']))
115
+ unpack_quip(layer.self_attn.k_proj, saved_layer, codebook_id, codesz)
116
+
117
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_v.pt', map_location=cpu)
118
+ layer.self_attn.v_scale.copy_(saved_layer['W_scale'])
119
+ if model_config.quip_params['outlier_channel_split']:
120
+ layer.self_attn.v_proj.ocs_dupe_inds.copy_(
121
+ torch.tensor(saved_layer['ocs_dupe_inds']))
122
+ unpack_quip(layer.self_attn.v_proj, saved_layer, codebook_id, codesz)
123
+
124
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_o.pt', map_location=cpu)
125
+ layer.self_attn.o_scale.copy_(saved_layer['W_scale'])
126
+ if model_config.quip_params['outlier_channel_split']:
127
+ layer.self_attn.o_proj.ocs_dupe_inds.copy_(
128
+ torch.tensor(saved_layer['ocs_dupe_inds']))
129
+ unpack_quip(layer.self_attn.o_proj, saved_layer, codebook_id, codesz)
130
+
131
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_up.pt', map_location=cpu)
132
+ layer.mlp.up_scale.copy_(saved_layer['W_scale'])
133
+ if model_config.quip_params['outlier_channel_split']:
134
+ layer.mlp.up_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
135
+ unpack_quip(layer.mlp.up_proj, saved_layer, codebook_id, codesz)
136
+
137
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_gate.pt', map_location=cpu)
138
+ layer.mlp.gate_scale.copy_(saved_layer['W_scale'])
139
+ if model_config.quip_params['outlier_channel_split']:
140
+ layer.mlp.gate_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
141
+ unpack_quip(layer.mlp.gate_proj, saved_layer, codebook_id, codesz)
142
+
143
+ saved_layer = torch.load(f'{args.quantized_path}/{ii}_down.pt', map_location=cpu)
144
+ layer.mlp.down_scale.copy_(saved_layer['W_scale'])
145
+ if model_config.quip_params['outlier_channel_split']:
146
+ layer.mlp.down_proj.ocs_dupe_inds.copy_(torch.tensor(saved_layer['ocs_dupe_inds']))
147
+ unpack_quip(layer.mlp.down_proj, saved_layer, codebook_id, codesz)
148
+
149
+ glog.info(f'saving model...')
150
+ model.save_pretrained(args.hf_output_path, safe_serialization=True)
151
+
152
+ del model
153
+
154
+ model, _ = model_from_hf_path(args.hf_output_path, use_cuda_graph=False)
155
+
156
+ glog.info('successfully loaded hfized model')
157
+
158
+ glog.info('generating some text...')
159
+
160
+ start = time.time()
161
+ prompt = 'It is a truth universally acknowledged that'
162
+ inputs = tokenizer(prompt, return_tensors='pt')
163
+ outputs = model.generate(input_ids=inputs['input_ids'].cuda(),
164
+ attention_mask=inputs['attention_mask'].cuda(),
165
+ max_new_tokens=64,
166
+ return_dict_in_generate=True)
167
+ token = outputs.sequences[0, :]
168
+ output_str = tokenizer.decode(token)
169
+ glog.info(output_str)
170
+ glog.info(f'elapsed: {time.time() - start}')
171
+
172
+
173
+ if __name__ == '__main__':
174
+ torch.set_grad_enabled(False)
175
+ torch.manual_seed(0)
176
+ args = parser.parse_args()
177
+ main(args)
quip-sharp/interactive_gen.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import glog
4
+ import torch
5
+ from torch.profiler import profile, record_function, ProfilerActivity
6
+ from transformers import AutoTokenizer
7
+ from lib.utils.unsafe_import import model_from_hf_path
8
+ import time
9
+
10
+ torch.set_grad_enabled(False)
11
+
12
+ parser = argparse.ArgumentParser()
13
+ parser.add_argument('--hf_path', default='meta-llama/Llama-2-70b-hf', type=str)
14
+ parser.add_argument('--max_length', default=64, type=int)
15
+ parser.add_argument('--no_use_flash_attn', action='store_true')
16
+
17
+
18
+ def main(args):
19
+ model, model_str = model_from_hf_path(args.hf_path,
20
+ use_cuda_graph=False,
21
+ use_flash_attn=not args.no_use_flash_attn)
22
+ tokenizer = AutoTokenizer.from_pretrained(model_str)
23
+ tokenizer.pad_token = tokenizer.eos_token
24
+
25
+ while True:
26
+ print()
27
+ prompt = input("Please enter your prompt or 'quit' (without quotes) to quit: ")
28
+ if prompt == 'quit':
29
+ return
30
+ inputs = tokenizer(prompt, return_tensors='pt')
31
+ outputs = model.generate(input_ids=inputs['input_ids'].cuda(),
32
+ attention_mask=inputs['attention_mask'].cuda(),
33
+ max_length=args.max_length,
34
+ penalty_alpha=0.6,
35
+ top_k=4,
36
+ use_cache=True,
37
+ return_dict_in_generate=True).sequences[0]
38
+ print()
39
+ print('Model Output: ', tokenizer.decode(outputs, skip_special_tokens=True))
40
+
41
+
42
+ if __name__ == '__main__':
43
+ torch.set_grad_enabled(False)
44
+ torch.manual_seed(0)
45
+ args = parser.parse_args()
46
+ main(args)
quip-sharp/lib/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
quip-sharp/lib/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (173 Bytes). View file
 
quip-sharp/lib/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (128 Bytes). View file
 
quip-sharp/lib/algo/__init__.py ADDED
File without changes
quip-sharp/lib/algo/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (133 Bytes). View file
 
quip-sharp/lib/algo/__pycache__/outlier_channel_split.cpython-39.pyc ADDED
Binary file (1.48 kB). View file
 
quip-sharp/lib/algo/__pycache__/preprocess.cpython-39.pyc ADDED
Binary file (452 Bytes). View file
 
quip-sharp/lib/algo/__pycache__/quip.cpython-39.pyc ADDED
Binary file (10.7 kB). View file
 
quip-sharp/lib/algo/outlier_channel_split.py ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ import math
4
+
5
+
6
+ def outlier_channel_split(W, H, mu, to_size):
7
+ old_dim = W.shape[-1]
8
+ remaining = to_size - old_dim
9
+
10
+ W = torch.cat([W, torch.zeros(W.shape[0], remaining).to(W.device)], dim=-1)
11
+ new_H = torch.zeros(to_size, to_size).to(H.device)
12
+ new_H[0:H.shape[0], 0:H.shape[1]] = H
13
+ H = new_H
14
+ mu = torch.cat([mu, torch.zeros(remaining).to(mu.device)], dim=0)
15
+
16
+ print('old drange', torch.max(W.flatten()) - torch.min(W.flatten()))
17
+ extra_inds = []
18
+ dupe_inds = list(range(old_dim))
19
+ for i in tqdm(range(old_dim, to_size), desc='outlier channel splitting'):
20
+ col = torch.argmax(W.abs()).item() % W.shape[-1]
21
+ row = math.ceil(torch.argmax(W.abs()).item() // W.shape[-1])
22
+ assert torch.allclose(W[row, col].abs(), torch.max(W.abs().flatten()))
23
+ extra_inds.append(col)
24
+ dupe_inds.append(dupe_inds[col])
25
+ W[:, col] /= 2
26
+ W[:, i] = W[:, col]
27
+ H[i, 0:i] = H[col, 0:i]
28
+ H[0:i, i] = H[0:i, col]
29
+ H[i, i] = H[col, col]
30
+ mu[i] = mu[col]
31
+ i += 1
32
+
33
+ print('new drange', torch.max(W.flatten()) - torch.min(W.flatten()))
34
+ assert torch.allclose(H.cpu(), H.cpu().T)
35
+ return W, H, mu, extra_inds, dupe_inds
36
+
37
+
38
+ def fuse_W(W, extra_inds):
39
+ for i in range(len(extra_inds)):
40
+ W[:, extra_inds[-(i + 1)]] += W[:, -(i + 1)]
41
+ return W[:, :W.shape[-1] - len(extra_inds)]
quip-sharp/lib/algo/preprocess.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ from lib import utils
4
+
5
+
6
+ def basic_preprocess(H, mu, n, args):
7
+ if not args.remove_mean:
8
+ H.add_(mu[None, :] * mu[:, None])
9
+ H = utils.regularize_H(H, n, args.sigma_reg)
10
+ return H, mu
quip-sharp/lib/algo/process.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ from lib import lattice, utils
4
+
5
+
6
+ def preprocess(H, mu, args):
7
+ if not args.remove_mean:
8
+ H.add_(mu[None, :] * mu[:, None])
9
+ H = utils.regularize_H(H, n, args.sigma_reg)
quip-sharp/lib/algo/quip.py ADDED
@@ -0,0 +1,417 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from tqdm import tqdm
3
+ from lib import utils
4
+ import glog
5
+ import copy
6
+
7
+
8
+ def RHT_H(H, SU):
9
+ return utils.matmul_hadUt(utils.matmul_hadUt(H * SU).T * SU)
10
+
11
+
12
+ def RHT_W(W, SU, SV):
13
+ return utils.matmul_hadUt(utils.matmul_hadUt(W.T * SV).T * SU)
14
+
15
+
16
+ def incoherence_preprocess(H, W, args):
17
+ dtype_ = torch.float64 if args.use_fp64 else torch.float32
18
+ device = H.device
19
+ (m, n) = W.shape
20
+
21
+ def _dump(Hr, Lhr, msg=''):
22
+ torch.save(Hr, f"{args.save_pfx}/Hr_debug_fft.pt")
23
+ torch.save(Lhr, f"{args.save_pfx}/Lhr_debug_fft.pt")
24
+ raise Exception(msg)
25
+
26
+ # diagonally rescale W,H to minimize proxy loss
27
+ scaleWH = None
28
+ Wr = W
29
+ Hr = H
30
+ if args.rescale_WH:
31
+ Hr = H / H.abs().max()
32
+ diagH = torch.diag(Hr)
33
+ diagW2 = torch.diag(W.T @ W)
34
+ diagH = torch.clamp(diagH, min=1e-8)
35
+ diagW2 = torch.clamp(diagW2, min=1e-8)
36
+ scaleWH = (diagH / diagW2).sqrt().sqrt().to(torch.float32)
37
+ scaleWH = scaleWH.clamp(min=1e-8)
38
+ Wr = Wr * scaleWH[None, :]
39
+ Hr = Hr / scaleWH[None, :]
40
+ Hr = Hr / scaleWH[:, None]
41
+ scaleWH = scaleWH.cpu()
42
+
43
+ # randomized hadamard transformation on H, W
44
+ if args.incoh_mode == "had":
45
+ SU = (torch.randn(n, device=device).sign() + 1e-5).sign().to(dtype_)
46
+ SV = (torch.randn(m, device=device).sign() + 1e-5).sign().to(dtype_)
47
+ Hr = RHT_H(Hr, SU)
48
+ Wr = RHT_W(Wr, SU, SV)
49
+ # randomized kronecker product on H, W
50
+ elif args.incoh_mode == "kron":
51
+ SU = utils.rand_ortho_butterfly_noblock(n).to(dtype_).to(device)
52
+ SV = utils.rand_ortho_butterfly_noblock(m).to(dtype_).to(device)
53
+ Hr = SU @ Hr @ SU.T
54
+ Wr = SV @ Wr @ SU.T
55
+ else:
56
+ raise NotImplementedError
57
+ SV = SV.cpu()
58
+ SU = SU.cpu()
59
+
60
+ Lhr = torch.linalg.cholesky(Hr)
61
+ if not torch.all(torch.isfinite(Lhr)):
62
+ return None
63
+
64
+ Wr = Wr.to(device)
65
+
66
+ return Lhr, Hr, Wr, SU, SV, scaleWH
67
+
68
+
69
+ def incoherence_process(hatWr, SU, SV, scaleWH, args):
70
+ device = hatWr.device
71
+ # reverse hadamard transformation
72
+ if args.incoh_mode == 'had':
73
+ hatWr = (utils.matmul_hadU((utils.matmul_hadU(hatWr) * SU.to(device)).T) * SV.to(device)).T
74
+ # reverse kronecker product
75
+ elif args.incoh_mode == 'kron':
76
+ hatWr = SV.T.to(device) @ hatWr @ SU.to(device)
77
+ else:
78
+ raise NotImplementedError
79
+
80
+ # reverse rescale W,H
81
+ if args.rescale_WH:
82
+ hatWr /= scaleWH[None, :].to(device)
83
+
84
+ assert torch.isfinite(hatWr).all()
85
+ return hatWr
86
+
87
+
88
+ def low_rank_preprocess(Wr, Hr, Lhr, args):
89
+ dtype_ = torch.float64 if args.use_fp64 else torch.float32
90
+ if args.full_svd:
91
+ svdZ = torch.linalg.svd(Wr.to(torch.float64) @ Lhr.to(torch.float64), full_matrices=False)
92
+ Hr -= (Lhr.to(torch.float64) @ svdZ.Vh.T[:, :args.lora_rank] @ \
93
+ svdZ.Vh[:args.lora_rank] @ Lhr.to(torch.float64).T).to(dtype_)
94
+ Hr += torch.diag(Hr).mean() * args.sigma_reg2 * \
95
+ torch.eye(Hr.shape[0], device=Hr.device, dtype=Hr.dtype)
96
+ Wr -= (svdZ.U[:, :args.lora_rank] @ svdZ.U.T[:args.lora_rank] @ Wr.to(
97
+ torch.float64)).to(dtype_)
98
+ else:
99
+ U_lrz, S_lrz, V_lrz = torch.svd_lowrank(Wr.to(torch.float64) @ Lhr.to(torch.float64),
100
+ q=2 * args.lora_rank,
101
+ niter=10)
102
+ U_lrz = U_lrz[:, :args.lora_rank]
103
+ V_lrz = V_lrz[:, :args.lora_rank]
104
+ Hr -= (Lhr.to(torch.float64) @ V_lrz @ V_lrz.T @ Lhr.to(torch.float64).T).to(dtype_)
105
+ Hr += torch.diag(Hr).mean() * args.sigma_reg2 * \
106
+ torch.eye(Hr.shape[0], device=Hr.device, dtype=Hr.dtype)
107
+ Wr -= (U_lrz @ U_lrz.T @ Wr.to(torch.float64)).to(dtype_)
108
+ return Wr, Hr
109
+
110
+
111
+ def low_rank_process(Wo, hatWr, Lhr, args):
112
+ # invLhr = torch.linalg.inv(Lhr)
113
+ # assert torch.isfinite(invLhr).all()
114
+
115
+ svdRZ = torch.linalg.svd((Wo - hatWr) @ Lhr, full_matrices=False)
116
+ A = svdRZ.U[:, :args.lora_rank]
117
+ # B = torch.diag(svdRZ.S[:args.lora_rank]) @ svdRZ.Vh[:args.lora_rank] @ invLhr
118
+ B = torch.linalg.solve_triangular(
119
+ Lhr,
120
+ torch.diag(svdRZ.S[:args.lora_rank]) @ svdRZ.Vh[:args.lora_rank],
121
+ upper=False,
122
+ left=False)
123
+ assert torch.isfinite(A).all() and torch.isfinite(B).all()
124
+
125
+ svdB = torch.linalg.svd(B, full_matrices=False)
126
+ A = (A @ svdB.U @ torch.diag(svdB.S.sqrt())).half()
127
+ B = (torch.diag(svdB.S.sqrt()) @ svdB.Vh).half()
128
+
129
+ hatWr = hatWr.to(A.device) + \
130
+ (A @ B).to(torch.float64 if args.use_fp64 else torch.float32)
131
+ return hatWr, A, B
132
+
133
+
134
+ def LDLQ(Wr, Hr, L, D, cb, args):
135
+ '''
136
+ want eta = (Wr - hatWr) @ L
137
+ want hatWr + eta = Wr + (Wr - hatWr) @ (L - I)
138
+ want hatWr = Q( Wr + (Wr - hatWr) @ (L - I) )
139
+ '''
140
+ (m, n) = Wr.shape
141
+ L, D = utils.block_LDL(Hr, cb.codesz)
142
+ hatWr = torch.zeros(m, n, dtype=Hr.dtype, device=Hr.device)
143
+ Qidxs = torch.zeros(m, n // cb.codesz, dtype=cb.idx_dtype, device=Hr.device)
144
+ for k in reversed(range(n // cb.codesz)):
145
+ WXWX = Wr[:, (cb.codesz * k):(cb.codesz * (k + 1))] + \
146
+ (Wr[:, (cb.codesz * (k + 1)):n] - hatWr[:, (cb.codesz * (k + 1)):n]) @ \
147
+ L[(cb.codesz * (k + 1)):n, (cb.codesz * k):(cb.codesz * (k + 1))]
148
+ hatWr[:, (cb.codesz * k):(cb.codesz * (k + 1))], Qidxs[:, k] = \
149
+ cb.quantize(WXWX)
150
+ for ie in range(args.quip_tune_iters):
151
+ for k in reversed(range(n // cb.codesz)):
152
+ WXWX = hatWr[:, (cb.codesz * k):(cb.codesz * (k + 1))] + (Wr - hatWr) @ \
153
+ Hr[:, (cb.codesz * k):(cb.codesz * (k + 1))] @ \
154
+ torch.linalg.inv(Hr[(cb.codesz * k):(cb.codesz * (k + 1)),
155
+ (cb.codesz * k):(cb.codesz * (k + 1))])
156
+ hatWr[:, (cb.codesz * k):(cb.codesz * (k + 1))], Qidxs[:, k] = cb.quantize(WXWX)
157
+
158
+ return hatWr, Qidxs
159
+
160
+
161
+ def LDLQ_buffered(Wr, Hr, L, D, cb, args, buf_cols=128):
162
+ '''
163
+ reduce overhead of memory r/w
164
+ buffer size is in groups of codesz (4) columns (for D4)
165
+ '''
166
+ (m, n) = Wr.shape
167
+ assert buf_cols % cb.codesz == 0
168
+ assert n % buf_cols == 0
169
+ buf_size = buf_cols // cb.codesz
170
+
171
+ L, D = utils.block_LDL(Hr, cb.codesz)
172
+ hatWr_T = torch.zeros(n, m, dtype=Hr.dtype, device=Hr.device)
173
+ Qidxs_T = torch.zeros(n // cb.codesz, m, dtype=cb.idx_dtype, device=Hr.device)
174
+
175
+ Wr_T = Wr.T.contiguous()
176
+ Wr = Wr.cpu()
177
+ Hr_T = Hr.T.contiguous()
178
+ Hr = Hr.cpu()
179
+
180
+ utils.clean()
181
+
182
+ # quip
183
+ prod_cache = torch.zeros(n, m, dtype=Wr_T.dtype, device=Wr_T.device)
184
+ for cur_col in range(n // cb.codesz, 0, -buf_size):
185
+ b_Wr_T = Wr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
186
+ b_hatWr_T = hatWr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
187
+ b_L = L[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col].contiguous()
188
+ b_prod = prod_cache[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
189
+ b_Qidxs_T = Qidxs_T[cur_col - buf_size:cur_col]
190
+ L_offset = cb.codesz * (cur_col - buf_size)
191
+ for i in reversed(range(buf_size)):
192
+ WXWX = b_Wr_T[cb.codesz * i : cb.codesz * (i + 1)] + \
193
+ b_L[cb.codesz * (i + 1):, L_offset + cb.codesz * i : L_offset + cb.codesz * (i + 1)].T @ \
194
+ (b_Wr_T[cb.codesz * (i + 1):] - b_hatWr_T[cb.codesz * (i + 1):]) + \
195
+ b_prod[cb.codesz * i : cb.codesz * (i + 1)]
196
+ q_out = cb.quantize(WXWX.T)
197
+ b_hatWr_T[cb.codesz * i:cb.codesz * (i + 1)] = q_out[0].T
198
+ b_Qidxs_T[i] = q_out[1]
199
+
200
+ prod_cache += b_L.T @ (b_Wr_T - b_hatWr_T)
201
+ hatWr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col] = b_hatWr_T
202
+
203
+ del b_Wr_T, b_hatWr_T, b_L, b_prod, L_offset, prod_cache
204
+ utils.clean()
205
+
206
+ # tune
207
+ for ie in range(args.quip_tune_iters):
208
+ # recompute delta to minimize errors
209
+ delta_T = Wr_T - hatWr_T
210
+ for cur_col in range(n // cb.codesz, 0, -buf_size):
211
+ b_hatWr_T = hatWr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
212
+ b_Hr_T = Hr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
213
+ b_delta_T = delta_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
214
+ b_Qidxs_T = Qidxs_T[cur_col - buf_size:cur_col]
215
+ Hr_offset = cb.codesz * (cur_col - buf_size)
216
+ for i in reversed(range(buf_size)):
217
+ if cb.codesz > 1:
218
+ WXWX = b_hatWr_T[cb.codesz * i : cb.codesz * (i + 1)] + \
219
+ torch.linalg.inv(b_Hr_T[cb.codesz * i : cb.codesz * (i + 1), Hr_offset + cb.codesz * i : Hr_offset + cb.codesz * (i + 1)].T).T @ b_Hr_T[cb.codesz * i : cb.codesz * (i + 1)] @ delta_T
220
+ else:
221
+ WXWX = b_hatWr_T[cb.codesz * i : cb.codesz * (i + 1)] + \
222
+ (1/b_Hr_T[i, Hr_offset + i]) * b_Hr_T[cb.codesz * i : cb.codesz * (i + 1)] @ delta_T
223
+ b_delta_T[cb.codesz * i:cb.codesz * (i + 1)] += b_hatWr_T[cb.codesz * i:cb.codesz *
224
+ (i + 1)]
225
+
226
+ if ie < args.quip_tune_iters - 1:
227
+ b_hatWr_T[cb.codesz * i:cb.codesz * (i + 1)] = cb.quantize(WXWX.T, False).T
228
+ else:
229
+ q_out = cb.quantize(WXWX.T)
230
+ b_hatWr_T[cb.codesz * i:cb.codesz * (i + 1)] = q_out[0].T
231
+ b_Qidxs_T[i] = q_out[1]
232
+
233
+ b_delta_T[cb.codesz * i:cb.codesz * (i + 1)] -= b_hatWr_T[cb.codesz * i:cb.codesz *
234
+ (i + 1)]
235
+ hatWr_T[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col] = b_hatWr_T
236
+ Qidxs_T[cur_col - buf_size:cur_col] = b_Qidxs_T
237
+
238
+ del delta_T, b_hatWr_T, b_Hr_T, b_delta_T, b_Qidxs_T, Hr_offset
239
+ utils.clean()
240
+
241
+ return hatWr_T.T.contiguous(), Qidxs_T.T.contiguous()
242
+
243
+
244
+ def LDLQ_buffered_lowmem(Wr, Hr, L, D, cb, args, buf_cols=128):
245
+ '''
246
+ reduce overhead of memory r/w
247
+ buffer size is in groups of code_col (4) columns (for D4)
248
+ '''
249
+ (m, n) = Wr.shape
250
+ hatWr = torch.zeros(m, n, dtype=Hr.dtype, device=Hr.device)
251
+ Qidxs = torch.zeros(m, n // cb.codesz, dtype=cb.idx_dtype, device=Hr.device)
252
+ assert n % buf_cols == 0 and buf_cols % cb.codesz == 0
253
+ buf_size = buf_cols // cb.codesz
254
+
255
+ # quip
256
+ prod_cache = torch.zeros(m, n, dtype=Wr.dtype, device=Wr.device)
257
+ for cur_col in range(n // cb.codesz, 0, -buf_size):
258
+ b_Wr = Wr[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
259
+ b_hatWr = hatWr[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
260
+ b_L = L[cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
261
+ b_prod = prod_cache[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
262
+ b_Qidxs = Qidxs[:, cur_col - buf_size:cur_col]
263
+ L_offset = cb.codesz * (cur_col - buf_size)
264
+ for i in reversed(range(buf_size)):
265
+ WXWX = b_Wr[:, cb.codesz * i : cb.codesz * (i + 1)] + \
266
+ (b_Wr[:, cb.codesz * (i + 1):] - b_hatWr[:, cb.codesz * (i + 1):]) @ \
267
+ b_L[cb.codesz * (i + 1):, L_offset + cb.codesz * i : L_offset + cb.codesz * (i + 1)] + \
268
+ b_prod[:, cb.codesz * i : cb.codesz * (i + 1)]
269
+ b_hatWr[:, cb.codesz * i : cb.codesz * (i + 1)], b_Qidxs[:, i] = cb.quantize(WXWX)
270
+ prod_cache += (b_Wr - b_hatWr) @ b_L
271
+
272
+ del b_Wr, b_hatWr, b_L, b_prod, L_offset, prod_cache
273
+ utils.clean()
274
+
275
+ # tune
276
+ for ie in range(args.quip_tune_iters):
277
+ # recompute delta to minimize errors
278
+ delta = Wr - hatWr
279
+ for cur_col in range(n // cb.codesz, 0, -buf_size):
280
+ b_hatWr = hatWr[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
281
+ b_Hr = Hr[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
282
+ b_delta = delta[:, cb.codesz * (cur_col - buf_size):cb.codesz * cur_col]
283
+ b_Qidxs = Qidxs[:, cur_col - buf_size:cur_col]
284
+ Hr_offset = cb.codesz * (cur_col - buf_size)
285
+ for i in reversed(range(buf_size)):
286
+ if cb.codesz > 1:
287
+ inv = torch.linalg.inv(b_Hr[Hr_offset + cb.codesz * i:Hr_offset + cb.codesz *
288
+ (i + 1), cb.codesz * i:cb.codesz * (i + 1)])
289
+ else:
290
+ inv = 1 / b_Hr[Hr_offset + i:Hr_offset + i + 1, i:i + 1]
291
+
292
+ WXWX = b_hatWr[:, cb.codesz * i : cb.codesz * (i + 1)] + \
293
+ delta @ b_Hr[:, cb.codesz * i : cb.codesz * (i + 1)] @ inv
294
+
295
+ b_delta[:,
296
+ cb.codesz * i:cb.codesz * (i + 1)] += b_hatWr[:,
297
+ cb.codesz * i:cb.codesz * (i + 1)]
298
+
299
+ if ie < args.quip_tune_iters - 1:
300
+ b_hatWr[:, cb.codesz * i:cb.codesz * (i + 1)] = cb.quantize(WXWX, False)
301
+ else:
302
+ b_hatWr[:,
303
+ cb.codesz * i:cb.codesz * (i + 1)], b_Qidxs[:,
304
+ i] = cb.quantize(WXWX)
305
+
306
+ b_delta[:,
307
+ cb.codesz * i:cb.codesz * (i + 1)] -= b_hatWr[:,
308
+ cb.codesz * i:cb.codesz * (i + 1)]
309
+ del delta, b_hatWr, b_Hr, b_delta, b_Qidxs, Hr_offset
310
+ utils.clean()
311
+
312
+ return hatWr, Qidxs
313
+
314
+
315
+ def quantize(H_orig, W_orig, rank, codebook_orig, args, device='cpu'):
316
+ orig_device = H_orig.device
317
+ W_orig_dtype = W_orig.dtype
318
+ dtype_ = torch.float64 if args.use_fp64 else torch.float32
319
+ (m, n) = W_orig.shape
320
+
321
+ H = H_orig.clone().to(dtype_).to(device)
322
+ W = W_orig.clone().to(dtype_).to(device)
323
+ codebook = copy.deepcopy(codebook_orig).to(dtype_)
324
+
325
+ assert (m % 2 == 0)
326
+ assert (n % 4 == 0)
327
+ assert (torch.all(torch.isfinite(H.cpu())))
328
+ assert (torch.all(torch.isfinite(W.cpu())))
329
+
330
+ # incoherence preprocessing
331
+ incoh_out = incoherence_preprocess(H, W, args)
332
+ if incoh_out is None:
333
+ if args.use_fp64:
334
+ raise Exception
335
+ new_args = copy.deepcopy(args)
336
+ new_args.use_fp64 = True
337
+ glog.info('incoherence_preprocess failed, recomputing in fp64')
338
+ del H, W, codebook
339
+ utils.clean()
340
+ return quantize(H_orig, W_orig, rank, codebook_orig, new_args, device)
341
+
342
+ Lhr, Hr, Wr, SU, SV, scaleWH = incoh_out
343
+ del incoh_out
344
+ utils.clean()
345
+
346
+ glog.info(f'mean square of W: {W.square().mean()}')
347
+ glog.info(f'mean square of Wr: {Wr.square().mean()}')
348
+ glog.info(f'difference between Hr and Hr.T: {((Hr - Hr.T).abs().max())}')
349
+ glog.info(f'max abs of Hr: {((Hr.abs().max()))}')
350
+ glog.info(f'min diag of Lhr: {Lhr.diag().min().item()}')
351
+
352
+ Wo = Wr.clone()
353
+
354
+ # remove low rank components before LDLQ
355
+ if args.lora_rank > 0:
356
+ Wr, Hr = low_rank_preprocess(Wr, Hr, Lhr, args)
357
+
358
+ # block LDL
359
+ block_LDL_out = utils.block_LDL(Hr, codebook.codesz)
360
+ if block_LDL_out is None:
361
+ if args.use_fp64:
362
+ raise Exception
363
+ new_args = copy.deepcopy(args)
364
+ new_args.use_fp64 = True
365
+ glog.info('block_LDL failed, recomputing in fp64')
366
+ del H, W, codebook, Lhr, Hr, Wr, SU, SV, scaleWH, Wo
367
+ utils.clean()
368
+ return quantize(H_orig, W_orig, rank, codebook_orig, new_args, device)
369
+
370
+ L, D = block_LDL_out
371
+ del block_LDL_out
372
+ del H_orig, W_orig, codebook_orig
373
+ utils.clean()
374
+
375
+ # LDLQ
376
+ Wscale = Wr.square().mean().sqrt()
377
+ if args.scale_override > 0:
378
+ Wscale /= args.scale_override
379
+ else:
380
+ Wscale /= codebook.opt_scale
381
+ Wr = Wr / Wscale
382
+ codebook = codebook.to(device)
383
+ if args.no_use_buffered:
384
+ hatWr, Qidxs = LDLQ(Wr, Hr, L, D, codebook, args)
385
+ elif args.use_fp64:
386
+ hatWr, Qidxs = LDLQ_buffered_lowmem(Wr, Hr, L, D, codebook, args, buf_cols=128)
387
+ else:
388
+ hatWr, Qidxs = LDLQ_buffered(Wr, Hr, L, D, codebook, args, buf_cols=128)
389
+
390
+ hatWr = hatWr * Wscale
391
+
392
+ # low rank correction
393
+ if args.lora_rank > 0:
394
+ hatWr, A, B = low_rank_process(Wo, hatWr, Lhr, args)
395
+ A = A.half().cpu()
396
+ B = B.half().cpu()
397
+ else:
398
+ A, B = None, None
399
+
400
+ # reverse incoherence process
401
+ hatW = incoherence_process(hatWr, SU, SV, scaleWH, args)
402
+
403
+ Qidxs = codebook.maybe_pack_idxs(Qidxs)
404
+
405
+ attr = {
406
+ 'Qidxs': Qidxs.to(orig_device),
407
+ 'Wscale': Wscale.to(dtype_).to(orig_device),
408
+ 'A': A,
409
+ 'B': B,
410
+ 'SU': SU.to(torch.int8).to(orig_device),
411
+ 'SV': SV.to(torch.int8).to(orig_device),
412
+ 'scaleWH': scaleWH,
413
+ }
414
+
415
+ utils.clean()
416
+
417
+ return hatW.to(W_orig_dtype).to(orig_device), attr
quip-sharp/lib/codebook/__init__.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from . import latticed4, latticee8_padded12, half_integer_4bit_1col
2
+
3
+ # name: (id, codebook class)
4
+ codebook_id = {
5
+ 'D4': (0, latticed4.D4_codebook),
6
+ 'E8P12': (7, latticee8_padded12.E8P12_codebook),
7
+ 'HI4B1C': (10, half_integer_4bit_1col.HI4B1C_codebook),
8
+ }
9
+
10
+ # id from above:6quantized linear implementation
11
+ quantized_class = {
12
+ 0: latticed4.QuantizedD4Linear,
13
+ 7: latticee8_padded12.QuantizedE8P12Linear,
14
+ 10: half_integer_4bit_1col.QuantizedHI4B1CLinear,
15
+ }
16
+
17
+ cache_permute_set = {
18
+ 0, # D4
19
+ }
20
+
21
+
22
+ def get_codebook(name):
23
+ return codebook_id[name][1]()
24
+
25
+
26
+ def get_id(name):
27
+ return codebook_id[name][0]
28
+
29
+
30
+ def get_quantized_class(id):
31
+ return quantized_class[id]
quip-sharp/lib/codebook/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (926 Bytes). View file
 
quip-sharp/lib/codebook/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (881 Bytes). View file
 
quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-310.pyc ADDED
Binary file (4.1 kB). View file
 
quip-sharp/lib/codebook/__pycache__/half_integer_4bit_1col.cpython-39.pyc ADDED
Binary file (4.03 kB). View file
 
quip-sharp/lib/codebook/__pycache__/latticed4.cpython-310.pyc ADDED
Binary file (5.38 kB). View file
 
quip-sharp/lib/codebook/__pycache__/latticed4.cpython-39.pyc ADDED
Binary file (5.34 kB). View file
 
quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-310.pyc ADDED
Binary file (8.88 kB). View file
 
quip-sharp/lib/codebook/__pycache__/latticee8_padded12.cpython-39.pyc ADDED
Binary file (8.82 kB). View file
 
quip-sharp/lib/codebook/half_integer_4bit_1col.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch import nn
3
+ import quiptools_cuda
4
+
5
+ from lib.utils.matmul_had import matmul_hadU_cuda, matmul_hadUt_cuda
6
+
7
+
8
+ def get_grid():
9
+ hintr = torch.arange(-8, 8) + 1 / 2
10
+ return hintr.unsqueeze(-1)
11
+
12
+
13
+ _HI4B1C_CACHED = get_grid()
14
+ _HI4B1C_NORM_CACHED = torch.diag(_HI4B1C_CACHED @ _HI4B1C_CACHED.T)
15
+
16
+
17
+ class HI4B1C_codebook(nn.Module):
18
+
19
+ def __init__(self, inference=False):
20
+ super(HI4B1C_codebook, self).__init__()
21
+ self.opt_scale = 2.97
22
+ self.codesz = 1
23
+ self.idx_dtype = torch.int32
24
+ self.packsz = 8
25
+ self.pack_out = False
26
+ self.version = 0
27
+
28
+ self.register_buffer('grid', _HI4B1C_CACHED)
29
+ if not inference:
30
+ self.register_buffer('grid_norm', _HI4B1C_NORM_CACHED)
31
+ '''
32
+ self.cuda()
33
+ samples = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(1), torch.eye(1)).rsample([200000]).cuda()
34
+ print(samples.shape)
35
+ def fn_s(s):
36
+ err = (self.quantize(samples*s, False)/s - samples).float().norm()**2
37
+ err = err.cpu() / torch.numel(samples)
38
+ return err.cpu()
39
+ import scipy
40
+ print(scipy.optimize.minimize_scalar(fn_s, bounds=(0.1, 100)))
41
+ exit()
42
+ '''
43
+
44
+ def round(self, X, grid, grid_norm):
45
+ assert X.shape[-1] == self.codesz
46
+ Xqidx = (2 * X @ grid.T - grid_norm).argmax(-1)
47
+ return grid[Xqidx], Xqidx
48
+
49
+ def quantize(self, X, return_idx=True):
50
+ vals, idx = self.round(X, self.grid, self.grid_norm)
51
+ if not return_idx:
52
+ return vals
53
+ return vals, idx.to(self.idx_dtype)
54
+
55
+ def maybe_pack_idxs(self, idxs):
56
+ return \
57
+ (idxs[:, 0::self.packsz] << 4*7) + \
58
+ (idxs[:, 2::self.packsz] << 4*6) + \
59
+ (idxs[:, 4::self.packsz] << 4*5) + \
60
+ (idxs[:, 6::self.packsz] << 4*4) + \
61
+ (idxs[:, 1::self.packsz] << 4*3) + \
62
+ (idxs[:, 3::self.packsz] << 4*2) + \
63
+ (idxs[:, 5::self.packsz] << 4*1) + \
64
+ idxs[:, 7::self.packsz]
65
+
66
+ def by_idxs(self, idxs, packed=False):
67
+ if packed:
68
+ idxs = idxs.repeat_interleave(self.packsz, dim=-1)
69
+ idxs[:, 0::self.packsz] = (idxs[:, 0::self.packsz] >> 28) & 15
70
+ idxs[:, 2::self.packsz] = (idxs[:, 2::self.packsz] >> 24) & 15
71
+ idxs[:, 4::self.packsz] = (idxs[:, 4::self.packsz] >> 20) & 15
72
+ idxs[:, 6::self.packsz] = (idxs[:, 6::self.packsz] >> 16) & 15
73
+ idxs[:, 1::self.packsz] = (idxs[:, 1::self.packsz] >> 12) & 15
74
+ idxs[:, 3::self.packsz] = (idxs[:, 3::self.packsz] >> 8) & 15
75
+ idxs[:, 5::self.packsz] = (idxs[:, 5::self.packsz] >> 4) & 15
76
+ idxs[:, 7::self.packsz] = idxs[:, 7::self.packsz] & 15
77
+
78
+ return self.grid[idxs.int()]
79
+
80
+
81
+ class QuantizedHI4B1CLinear(nn.Module):
82
+
83
+ def __init__(self, device):
84
+ super().__init__()
85
+ self.codebook = HI4B1C_codebook(inference=True).to(torch.float16).to(device)
86
+
87
+ def forward(self,
88
+ input,
89
+ Qidxs,
90
+ SU,
91
+ SV,
92
+ Wscale,
93
+ had_left,
94
+ had_right,
95
+ K_left,
96
+ K_right,
97
+ rank=-1,
98
+ A=None,
99
+ B=None,
100
+ rescale_WH=False,
101
+ scaleWH=None,
102
+ packed=False):
103
+ n, m = len(SU), len(SV)
104
+
105
+ x = input.view(-1, n).to(torch.float32)
106
+ if rescale_WH:
107
+ x /= scaleWH
108
+ x = x * SU
109
+ x = matmul_hadUt_cuda(x, had_left, K_left)
110
+
111
+ if rank > 0:
112
+ Bx = x @ B.t().to(torch.float32)
113
+ ABx = Bx @ A.t().to(torch.float32)
114
+
115
+ num_scale = 1024
116
+ x = x / num_scale
117
+ x = x.to(torch.float16)
118
+
119
+ if packed:
120
+ W_decompressed = torch.zeros(m, n, dtype=torch.float16, device=x.device)
121
+ quiptools_cuda.decompress_hi4b1c_packed(Qidxs, self.codebook.grid, W_decompressed)
122
+ else:
123
+ W_decompressed = self.codebook.by_idxs(Qidxs, packed=False).reshape(-1, n)
124
+
125
+ z = x @ W_decompressed.t()
126
+
127
+ x = z.to(torch.float32)
128
+ x = x * (Wscale * num_scale)
129
+
130
+ if rank > 0:
131
+ x = x + ABx.to(torch.float32)
132
+
133
+ x = matmul_hadU_cuda(x, had_right, K_right)
134
+ x = x * SV
135
+
136
+ output = x.view(*input.shape[:-1], m)
137
+
138
+ return output
quip-sharp/lib/codebook/latticed4.py ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ builds a deep-hole-centered D4 codebook
3
+ this is a codebook consisting of points on the lattice in R4
4
+ where each component is a half-integer
5
+ and the components sum to an even number
6
+ from this lattice, we select the points that have a norm-squared of at most 9
7
+ this results in a codebook of 256 points distributed as follows
8
+ 8 with sorted abs of [1/2, 1/2, 1/2, 1/2]
9
+ 8 [3/2, 3/2, 3/2, 3/2]
10
+ 4c2 * 8 = 48 [1/2, 1/2. 3/2, 3/2]
11
+ 4 * 8 = 32 [1/2, 1/2, 1/2, 3/2]
12
+ 4 * 8 = 32 [1/2, 3/2, 3/2, 3/2]
13
+ 4 * 8 = 32 [1/2, 1/2, 1/2, 5/2]
14
+ 4 * 3 * 8 = 96 [1/2, 1/2, 3/2, 5/2]
15
+ """
16
+
17
+ import torch
18
+ from torch import nn
19
+ import quiptools_cuda
20
+
21
+ from lib.utils.matmul_had import matmul_hadU_cuda, matmul_hadUt_cuda
22
+
23
+ _D4_CODESZ = 4
24
+
25
+
26
+ def code3_signs(i3, x):
27
+ if (i3 & (1 << 5)):
28
+ x[2] *= -1
29
+ if (i3 & (1 << 6)):
30
+ x[1] *= -1
31
+ if (sum(x) % 2 != 0):
32
+ x[3] *= -1
33
+ if (i3 & (1 << 7)):
34
+ for j in range(_D4_CODESZ):
35
+ x[j] *= -1
36
+ assert (sum(x) % 2 == 0)
37
+ return x
38
+
39
+
40
+ def code8_to_d4(i8):
41
+ assert ((i8 >= 0) and (i8 < 256))
42
+ i3 = i8 & (7 << 5)
43
+ i8 = i8 & 31
44
+ if i8 < 16:
45
+ if i8 < 8:
46
+ if i8 < 2:
47
+ if i8 < 1:
48
+ return code3_signs(i3, [0.5] * _D4_CODESZ)
49
+ else:
50
+ return code3_signs(i3, [1.5] * _D4_CODESZ)
51
+ else:
52
+ ibx = i8 >> 1
53
+ if i8 & 1:
54
+ x = [0.5] * _D4_CODESZ
55
+ x[0] = 1.5
56
+ x[ibx] = 1.5
57
+ else:
58
+ x = [1.5] * _D4_CODESZ
59
+ x[0] = 0.5
60
+ x[ibx] = 0.5
61
+ return code3_signs(i3, x)
62
+ else:
63
+ ibx = (i8 & 3)
64
+ if i8 < 8 + 4:
65
+ x = [0.5] * _D4_CODESZ
66
+ x[ibx] = 1.5
67
+ else:
68
+ x = [1.5] * _D4_CODESZ
69
+ x[ibx] = 0.5
70
+ return code3_signs(i3, x)
71
+ else:
72
+ if i8 < 16 + 4:
73
+ ibx = (i8 & 3)
74
+ x = [0.5] * _D4_CODESZ
75
+ x[ibx] = 2.5
76
+ return code3_signs(i3, x)
77
+ else:
78
+ ibx = i8 - 20
79
+ ib4 = ibx & 3
80
+ ib3 = ibx >> 2
81
+ x = [0.5] * _D4_CODESZ
82
+ x[ib4] = 1.5
83
+ if (ib3 >= ib4):
84
+ ib3 += 1
85
+ x[ib3] = 2.5
86
+ return code3_signs(i3, x)
87
+
88
+
89
+ def build_D4_CB():
90
+ CB = torch.zeros(256, _D4_CODESZ)
91
+ for i in range(256):
92
+ x = code8_to_d4(i)
93
+ for j in range(_D4_CODESZ):
94
+ CB[i, j] = x[j]
95
+ return CB
96
+
97
+
98
+ '''
99
+ def quantize(X, CB):
100
+ scale = X.square().mean().sqrt() / 1.21
101
+ X = X / scale
102
+ Xqidx = (2 * X @ CB.t() - (CB @ CB.t()).diag()).argmax(1)
103
+ return (CB[Xqidx, :] * scale, scale, Xqidx.to(torch.uint8))
104
+ def quantize_noscale_a(X, CB, A):
105
+ Xqidx = (2 * X @ A @ CB.t() - (CB @ A @ CB.t()).diag()).argmax(1)
106
+ return (CB[Xqidx, :], Xqidx.to(torch.uint8))
107
+ def quantize_full_lattice(X):
108
+ Xround = (X + 0.5).round() - 0.5
109
+ adjustParity = Xround.sum(1) % 2
110
+ furthestEntry = (X - Xround).abs().argmax(1)
111
+ furthestEntrySign = (X - Xround)[torch.arange(n), furthestEntry].sign()
112
+ Xround[torch.arange(n), furthestEntry] += furthestEntrySign * adjustParity
113
+ return Xround
114
+ '''
115
+
116
+
117
+ class D4_codebook(nn.Module):
118
+
119
+ def __init__(self, inference=False):
120
+ super(D4_codebook, self).__init__()
121
+ self.register_buffer("grid", build_D4_CB())
122
+ if not inference:
123
+ self.register_buffer('grid_norm', (self.grid @ self.grid.T).diag())
124
+ self.codesz = _D4_CODESZ
125
+ self.opt_scale = 1.21
126
+ self.idx_dtype = torch.uint8
127
+ self.packsz = 1
128
+ self.pack_out = False
129
+ self.version = 0
130
+
131
+ def _quantize_noscale(self, X, return_idx=True):
132
+ Xqidx = (2 * X @ self.grid.T - self.grid_norm).argmax(1)
133
+ if return_idx:
134
+ return self.grid[Xqidx, :], Xqidx.to(self.idx_dtype)
135
+ return self.grid[Xqidx, :]
136
+
137
+ def quantize(self, X, return_idx=True):
138
+ assert X.shape[-1] == self.codesz
139
+ return self._quantize_noscale(X, return_idx=return_idx)
140
+
141
+ def maybe_pack_idxs(self, idxs):
142
+ return idxs
143
+
144
+ def by_idxs(self, idxs, **kwargs):
145
+ return self.grid[idxs.int()]
146
+
147
+
148
+ class QuantizedD4Linear(nn.Module):
149
+
150
+ def __init__(self, device):
151
+ super().__init__()
152
+ self.codebook = D4_codebook(inference=True).to(torch.float16).to(device)
153
+
154
+ def forward(self,
155
+ input,
156
+ Qidxs,
157
+ SU,
158
+ SV,
159
+ Wscale,
160
+ had_left,
161
+ had_right,
162
+ K_left,
163
+ K_right,
164
+ rank=-1,
165
+ A=None,
166
+ B=None,
167
+ rescale_WH=False,
168
+ scaleWH=None,
169
+ **kwargs):
170
+ (m, n) = Qidxs.shape
171
+
172
+ x = input.view(-1, _D4_CODESZ * n).to(torch.float32)
173
+ if rescale_WH:
174
+ x /= scaleWH
175
+ x = matmul_hadUt_cuda(x * SU, had_left, K_left)
176
+
177
+ if rank > 0:
178
+ Bx = x @ B.t().to(torch.float32)
179
+ ABx = Bx @ A.t().to(torch.float32)
180
+
181
+ x = (x / 1024).to(torch.float16)
182
+
183
+ if (x.shape[0] <= 8):
184
+ if (x.shape[0] == 8):
185
+ x_padded = x.contiguous()
186
+ else:
187
+ x_padded = torch.zeros(8, n * _D4_CODESZ, dtype=torch.float16, device=x.device)
188
+ x_padded[0:(x.shape[0]), :] = x
189
+ z = torch.zeros(8, m, dtype=x.dtype, device=x.device)
190
+ quiptools_cuda.lookupmatmul_d4_k8(x_padded, Qidxs, self.codebook.grid, z)
191
+ z = z[0:(x.shape[0]), :]
192
+ elif (x.shape[0] <= 16):
193
+ if (x.shape[0] == 16):
194
+ x_padded = x.contiguous()
195
+ else:
196
+ x_padded = torch.zeros(16, n * _D4_CODESZ, dtype=torch.float16, device=x.device)
197
+ x_padded[0:(x.shape[0]), :] = x
198
+ z = torch.zeros(16, m, dtype=x.dtype, device=x.device)
199
+ quiptools_cuda.lookupmatmul_d4_k16(x_padded, Qidxs, self.codebook.grid, z)
200
+ z = z[0:(x.shape[0]), :]
201
+ elif (x.shape[0] <= 32):
202
+ if (x.shape[0] == 32):
203
+ x_padded = x.contiguous()
204
+ else:
205
+ x_padded = torch.zeros(32, n * _D4_CODESZ, dtype=torch.float16, device=x.device)
206
+ x_padded[0:(x.shape[0]), :] = x
207
+ z = torch.zeros(32, m, dtype=x.dtype, device=x.device)
208
+ quiptools_cuda.lookupmatmul_d4_k32(x_padded, Qidxs, self.codebook.grid, z)
209
+ z = z[0:(x.shape[0]), :]
210
+ else:
211
+ # manifest the matrix
212
+ W_decompressed = torch.zeros(m, n * _D4_CODESZ, dtype=torch.float16, device=x.device)
213
+ quiptools_cuda.decompress_d4(Qidxs, self.codebook.grid, W_decompressed)
214
+ z = x @ W_decompressed.t()
215
+
216
+ x = z.to(torch.float32) * (Wscale * 1024)
217
+ if rank > 0:
218
+ x = x + ABx.to(torch.float32)
219
+
220
+ return (matmul_hadU_cuda(x, had_right, K_right) * SV).view(*input.shape[:-1], m)
quip-sharp/lib/codebook/latticee8_padded12.py ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ D8^ = D8 + 1/2 intersected with ball of radius sqrt(10)
3
+ |D8^| has 227 entries
4
+ We then add 29 entries from the set of vectors with 5 3/2 and 3 1/2
5
+ The total codebook is all 2^7 flips of these 256 entries (2^15) +- 1/4
6
+ which makes 2^16 entries.
7
+ This corresponds to a subset of E8 + 1/4
8
+ """
9
+
10
+ import torch
11
+ import math
12
+ from torch import nn
13
+ from functools import cache
14
+ import itertools
15
+ from lib.utils.matmul_had import matmul_hadU_cuda, matmul_hadUt_cuda
16
+ import quiptools_cuda
17
+
18
+ _E8P_CODESZ = 8
19
+ _INT_MAP = 2**(torch.arange(_E8P_CODESZ).flip(0))
20
+
21
+
22
+ def int2mask(i, int_map):
23
+ return ((i & int_map) > 0).int()
24
+
25
+
26
+ def mask2int(mask, int_map):
27
+ return (int_map.unsqueeze(0) * mask.int()).sum(dim=-1)
28
+
29
+
30
+ def get_abs_grid():
31
+ intr = torch.arange(-4, 4)
32
+ d8 = torch.cartesian_prod(*[intr] * _E8P_CODESZ).float() + 1 / 2
33
+ d8m2 = (d8.sum(dim=-1) % 2 == 0)
34
+ d8n = d8.norm(dim=-1)**2 <= 10
35
+ d8abs = torch.unique(d8[sorted(torch.where(d8m2 * d8n)[0])].abs(), dim=0)
36
+
37
+ norm12 = torch.tensor([
38
+ [3, 1, 1, 1, 3, 3, 3, 3],
39
+ [1, 3, 1, 1, 3, 3, 3, 3],
40
+ [1, 1, 3, 1, 3, 3, 3, 3],
41
+ [1, 1, 1, 3, 3, 3, 3, 3],
42
+ [3, 3, 3, 1, 3, 3, 1, 1],
43
+ [3, 3, 3, 1, 3, 1, 3, 1],
44
+ [3, 3, 3, 1, 1, 3, 3, 1],
45
+ [3, 3, 3, 1, 3, 1, 1, 3],
46
+ [3, 3, 3, 1, 1, 3, 1, 3],
47
+ [3, 3, 3, 1, 1, 1, 3, 3],
48
+ [3, 3, 1, 3, 3, 3, 1, 1],
49
+ [3, 3, 1, 3, 3, 1, 3, 1],
50
+ [3, 3, 1, 3, 1, 3, 3, 1],
51
+ [3, 3, 1, 3, 3, 1, 1, 3],
52
+ [3, 3, 1, 3, 1, 3, 1, 3],
53
+ [3, 3, 1, 3, 1, 1, 3, 3],
54
+ [3, 1, 3, 3, 3, 3, 1, 1],
55
+ [3, 1, 3, 3, 3, 1, 3, 1],
56
+ [3, 1, 3, 3, 1, 3, 3, 1],
57
+ [3, 1, 3, 3, 3, 1, 1, 3],
58
+ [3, 1, 3, 3, 1, 3, 1, 3],
59
+ [1, 3, 3, 3, 1, 1, 3, 3],
60
+ [1, 3, 3, 3, 3, 3, 1, 1],
61
+ [1, 3, 3, 3, 3, 1, 3, 1],
62
+ [1, 3, 3, 3, 1, 3, 3, 1],
63
+ [1, 3, 3, 3, 3, 1, 1, 3],
64
+ [1, 3, 3, 3, 1, 3, 1, 3],
65
+ [1, 3, 3, 3, 1, 1, 3, 3],
66
+ [3, 3, 1, 1, 3, 3, 3, 1],
67
+ ]) / 2
68
+ return torch.concat([d8abs, norm12], dim=0)
69
+
70
+
71
+ def get_full_grid(abs_grid):
72
+ """
73
+ idx format:
74
+ - first 8 bits = which of the 256 entries in the abs grid
75
+ - next 7 bits = which of the right 7 dims to negate (8th can be inferred)
76
+ - last bit = +1/4 if true else -1/4
77
+ """
78
+ is_even_flips = abs_grid.sum(dim=-1) % 2 == 0
79
+ abs_idxs = torch.arange(len(abs_grid)) << _E8P_CODESZ
80
+ entries = [[], []]
81
+ idxs = [[], []]
82
+ for i in range(2**(_E8P_CODESZ - 1)):
83
+ mask = int2mask(i, _INT_MAP)
84
+ mask_even = (mask.sum(dim=-1) % 2 == 0)
85
+ mask = mask.unsqueeze(0).repeat(len(abs_grid), 1)
86
+ mask[:, 0] = mask_even != is_even_flips
87
+ mask = 1 - 2 * mask
88
+ entries[0].append(abs_grid * mask + 1 / 4)
89
+ idxs[0].append(abs_idxs + (i << 1) + 1)
90
+ entries[1].append(abs_grid * mask - 1 / 4)
91
+ idxs[1].append(abs_idxs + (i << 1))
92
+
93
+ for i in range(2):
94
+ entries[i] = torch.concat(entries[i], dim=0)
95
+ idxs[i] = torch.concat(idxs[i], dim=0)
96
+ entries = torch.concat(entries, dim=0)
97
+ idxs = torch.concat(idxs, dim=0)
98
+ return entries, idxs
99
+
100
+
101
+ _E8P_ABS_CACHED = get_abs_grid()
102
+ _E8P_GRID, _E8P_GRID_IDX = get_full_grid(_E8P_ABS_CACHED)
103
+
104
+
105
+ class E8P12_codebook(nn.Module):
106
+
107
+ def __init__(self, inference=False):
108
+ super(E8P12_codebook, self).__init__()
109
+ self.opt_scale = 1 #.03#/1.09
110
+ self.codesz = _E8P_CODESZ
111
+ self.idx_dtype = torch.int16
112
+ self.idx_offset = -2**15
113
+ self.packsz = 1
114
+ self.pack_out = False
115
+ self.version = 0
116
+
117
+ self.register_buffer('grid_abs', _E8P_ABS_CACHED)
118
+ self.register_buffer('grid_abs_even', self.grid_abs.sum(dim=-1) % 2 == 0)
119
+
120
+ if not inference:
121
+ self.register_buffer('int_map', _INT_MAP)
122
+ self.register_buffer('grid', _E8P_GRID)
123
+ self.register_buffer('grid_idx_map',
124
+ (_E8P_GRID_IDX + self.idx_offset).to(self.idx_dtype))
125
+ idx_lut = torch.zeros(_E8P_GRID_IDX.shape).int()
126
+ idx_lut[_E8P_GRID_IDX] = torch.arange(len(_E8P_GRID_IDX)).int()
127
+ self.register_buffer('grid_idx_inv', idx_lut)
128
+
129
+ self.register_buffer('grid_norm', torch.diag(self.grid @ self.grid.T))
130
+ grid_part = self.grid[:len(self.grid) // 2] - 1 / 4
131
+ idxs = torch.where(
132
+ ((grid_part[:, 1:] < 0).sum(dim=-1) <= 1) * \
133
+ (grid_part[:, 1:].min(dim=-1).values >= -0.5)
134
+ )[0]
135
+ grid_part = grid_part[idxs]
136
+ self.register_buffer('grid_part', grid_part)
137
+ self.register_buffer('grid_part_norm', torch.diag(grid_part @ grid_part.T))
138
+ allcombo_idx, idx_map = self.iterate_mask()
139
+ self.register_buffer('allcombo_idx', allcombo_idx)
140
+ self.register_buffer('idx_map', idx_map)
141
+ '''
142
+ self.to('cuda')
143
+ samples = torch.distributions.multivariate_normal.MultivariateNormal(torch.zeros(8), torch.eye(8)).rsample([2000000]).cuda()
144
+ for s in torch.arange(0.8, 1.2, 0.01):
145
+ print(s, ((self.quantize(samples*s, False)/s - samples).norm(dim=-1)**2).mean())
146
+ exit()
147
+ '''
148
+
149
+ def iterate_mask(self, device=0):
150
+ flips = torch.stack([((torch.tensor([i]) & self.int_map) > 0).int()
151
+ for i in range(2**_E8P_CODESZ)]).to(device)
152
+ raw_idx = torch.where(flips.sum(dim=-1) % 2 == 0)[0]
153
+ flips = 1 - 2 * flips[raw_idx]
154
+ idx_map = torch.zeros(2**_E8P_CODESZ, dtype=torch.int32)
155
+ for i in range(len(raw_idx)):
156
+ idx_map[raw_idx[i]] = i
157
+ allcombo = flips.unsqueeze(1) * self.grid_part.unsqueeze(0).to(device)
158
+ allcombo_idx = torch.zeros(allcombo.shape[0:2]).int()
159
+ for i in range(len(allcombo)):
160
+ allcombo_idx[i] = self.round(allcombo[i], self.grid.to(device),
161
+ self.grid_norm.to(device))[1]
162
+ return allcombo_idx.cpu(), idx_map.cpu()
163
+
164
+ def round(self, X, grid, grid_norm):
165
+ assert X.shape[-1] == self.codesz
166
+ Xqidx = (2 * X @ grid.T - grid_norm).argmax(-1)
167
+ return grid[Xqidx], Xqidx
168
+
169
+ def fast_quantize_part(self, X):
170
+ X_part = torch.abs(X)
171
+ X_odd = torch.where((X < 0).sum(dim=-1) % 2 != 0)[0]
172
+ X_part[X_odd, 0] = -X_part[X_odd, 0]
173
+ mask = 1 - 2 * (X < 0).to(torch.float32)
174
+ mask[X_odd, 0] = -mask[X_odd, 0]
175
+ roundout, Xqidx = self.round(X_part, self.grid_part, self.grid_part_norm)
176
+ vals = roundout * mask
177
+ real_idx = self.allcombo_idx[self.idx_map[mask2int((1 - mask) / 2, self.int_map)], Xqidx]
178
+ err = (X - vals).norm(dim=-1)
179
+ return vals, real_idx, err
180
+
181
+ def quantize(self, X, return_idx=True):
182
+ X_plus = X + 1 / 4 # quantize X to D8^ - 1/4
183
+ X_minus = X - 1 / 4 # quantize X to D8^ + 1/4
184
+
185
+ plus_vals, plus_idx, plus_err = self.fast_quantize_part(X_plus)
186
+ minus_vals, minus_idx, minus_err = self.fast_quantize_part(X_minus)
187
+ plus_idx = plus_idx + 2**15
188
+
189
+ which = plus_err < minus_err
190
+ final_vals = torch.where(which.unsqueeze(-1), plus_vals - 1 / 4, minus_vals + 1 / 4)
191
+
192
+ if return_idx:
193
+ final_idxs = self.grid_idx_map[torch.where(which, plus_idx, minus_idx)]
194
+ return final_vals, final_idxs
195
+
196
+ return final_vals
197
+
198
+ def maybe_pack_idxs(self, idxs):
199
+ return idxs
200
+
201
+ def by_idxs(self, idxs, **kwargs):
202
+ return self.grid[self.grid_idx_inv[idxs.int() - self.idx_offset]]
203
+
204
+
205
+ class QuantizedE8P12Linear(nn.Module):
206
+
207
+ def __init__(self, device):
208
+ super().__init__()
209
+ self.codebook = E8P12_codebook(inference=True).to(torch.float16).to(device)
210
+ self.codebook_matvec = torch.zeros((256, ), dtype=torch.int64, device=device)
211
+ for i in range(8):
212
+ chunk = (self.codebook.grid_abs[:, i] * 4).to(torch.int64)
213
+ self.codebook_matvec |= chunk << (i * 8)
214
+
215
+ def forward(self,
216
+ input,
217
+ Qidxs,
218
+ SU,
219
+ SV,
220
+ Wscale,
221
+ had_left,
222
+ had_right,
223
+ K_left,
224
+ K_right,
225
+ rank=-1,
226
+ A=None,
227
+ B=None,
228
+ rescale_WH=False,
229
+ scaleWH=None,
230
+ **kwargs):
231
+ (m, n) = Qidxs.shape
232
+
233
+ x = input.view(-1, n * _E8P_CODESZ).to(torch.float32)
234
+ if rescale_WH:
235
+ x /= scaleWH
236
+ x = x * SU
237
+ x = matmul_hadUt_cuda(x, had_left, K_left)
238
+
239
+ if rank > 0:
240
+ Bx = x @ B.t().to(torch.float32)
241
+ ABx = Bx @ A.t().to(torch.float32)
242
+
243
+ # TODO: find the optimal threshold
244
+ if x.size(0) < 6:
245
+ x = quiptools_cuda.decode_matmul_e8p(x, Qidxs - 0x8000,
246
+ self.codebook_matvec).to(torch.float32)
247
+ else:
248
+ W_decompressed = torch.zeros(m,
249
+ n * _E8P_CODESZ,
250
+ device=Qidxs.device,
251
+ dtype=torch.float16)
252
+ quiptools_cuda.decompress_e8p_origorder(Qidxs, self.codebook.grid_abs,
253
+ self.codebook.grid_abs_even, W_decompressed)
254
+ x = (x.to(torch.float16) @ W_decompressed.T).to(torch.float32)
255
+
256
+ x *= Wscale
257
+
258
+ if rank > 0:
259
+ x = x + ABx.to(torch.float32)
260
+
261
+ x = matmul_hadU_cuda(x, had_right, K_right)
262
+ x = x * SV
263
+
264
+ output = x.view(*input.shape[:-1], m)
265
+ return output
quip-sharp/lib/linear/__init__.py ADDED
File without changes
quip-sharp/lib/linear/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (180 Bytes). View file
 
quip-sharp/lib/linear/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (135 Bytes). View file
 
quip-sharp/lib/linear/__pycache__/quantized_linear.cpython-310.pyc ADDED
Binary file (2.37 kB). View file