experiment-9
experiment-9 is a merge of the following models using LazyMergekit:
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
𧩠Configuration
slices:
- sources:
- layer_range: [0, 4]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [5, 8]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [9, 12]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [13, 16]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [17, 20]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [21, 24]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [25, 28]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
- sources:
- layer_range: [29, 32]
model: failspy/Meta-Llama-3-8B-Instruct-abliterated-v3
merge_method: passthrough
dtype: float16
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "KingNish/experiment-9"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.