mistral7b-sharded-finetune-bn22
This model is a fine-tuned version of filipealmeida/Mistral-7B-Instruct-v0.1-sharded on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1132
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 2500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.8338 | 0.16 | 100 | 1.4732 |
1.3163 | 0.33 | 200 | 1.2741 |
1.2292 | 0.49 | 300 | 1.2399 |
1.1665 | 0.65 | 400 | 1.2146 |
1.1597 | 0.82 | 500 | 1.1913 |
1.1025 | 0.98 | 600 | 1.1699 |
1.03 | 1.14 | 700 | 1.1546 |
1.0461 | 1.31 | 800 | 1.1491 |
1.0149 | 1.47 | 900 | 1.1334 |
0.9989 | 1.63 | 1000 | 1.1270 |
1.0385 | 1.79 | 1100 | 1.1184 |
1.0051 | 1.96 | 1200 | 1.1102 |
0.9365 | 2.12 | 1300 | 1.1210 |
0.8931 | 2.28 | 1400 | 1.1105 |
0.9094 | 2.45 | 1500 | 1.1095 |
0.8989 | 2.61 | 1600 | 1.1079 |
0.9027 | 2.77 | 1700 | 1.1043 |
0.9007 | 2.94 | 1800 | 1.1010 |
0.8666 | 3.1 | 1900 | 1.1111 |
0.8259 | 3.26 | 2000 | 1.1128 |
0.8288 | 3.43 | 2100 | 1.1153 |
0.8223 | 3.59 | 2200 | 1.1133 |
0.7891 | 3.75 | 2300 | 1.1132 |
Framework versions
- PEFT 0.7.0
- Transformers 4.36.0.dev0
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0
- Downloads last month
- 5