results
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6218
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9667 | 0.07 | 500 | 0.8561 |
0.8253 | 0.14 | 1000 | 0.7976 |
0.7771 | 0.2 | 1500 | 0.7676 |
0.7623 | 0.27 | 2000 | 0.7459 |
0.7399 | 0.34 | 2500 | 0.7269 |
0.7253 | 0.41 | 3000 | 0.7166 |
0.7241 | 0.47 | 3500 | 0.7035 |
0.7063 | 0.54 | 4000 | 0.6962 |
0.6857 | 0.61 | 4500 | 0.6883 |
0.6909 | 0.68 | 5000 | 0.6829 |
0.6754 | 0.75 | 5500 | 0.6731 |
0.6803 | 0.81 | 6000 | 0.6657 |
0.6659 | 0.88 | 6500 | 0.6599 |
0.6603 | 0.95 | 7000 | 0.6556 |
0.6249 | 1.02 | 7500 | 0.6610 |
0.53 | 1.09 | 8000 | 0.6583 |
0.5246 | 1.15 | 8500 | 0.6544 |
0.5204 | 1.22 | 9000 | 0.6515 |
0.5135 | 1.29 | 9500 | 0.6498 |
0.5165 | 1.36 | 10000 | 0.6433 |
0.518 | 1.42 | 10500 | 0.6410 |
0.5032 | 1.49 | 11000 | 0.6368 |
0.5091 | 1.56 | 11500 | 0.6335 |
0.5038 | 1.63 | 12000 | 0.6307 |
0.4907 | 1.7 | 12500 | 0.6302 |
0.5006 | 1.76 | 13000 | 0.6262 |
0.4823 | 1.83 | 13500 | 0.6239 |
0.4906 | 1.9 | 14000 | 0.6225 |
0.4905 | 1.97 | 14500 | 0.6218 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
Model tree for Ka4on/results
Base model
mistralai/Mistral-7B-v0.1