KI22's picture
End of training
ebbda2f verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - superb
metrics:
  - accuracy
model-index:
  - name: wav2vec2-base-finetuned-ks
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: superb
          type: superb
          config: ks
          split: validation
          args: ks
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9830832597822889

wav2vec2-base-finetuned-ks

This model is a fine-tuned version of facebook/wav2vec2-base on the superb dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0858
  • Accuracy: 0.9831

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.634 0.9994 399 0.4822 0.9709
0.2705 1.9987 798 0.1673 0.9772
0.1614 2.9981 1197 0.1051 0.9821
0.1297 4.0 1597 0.0931 0.9826
0.1273 4.9969 1995 0.0858 0.9831

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1