Update README.md
#1
by
TunesRX
- opened
README.md
CHANGED
@@ -46,8 +46,8 @@ A standard BERT base for Swedish trained on a variety of sources. Vocabulary siz
|
|
46 |
```python
|
47 |
from transformers import AutoModel,AutoTokenizer
|
48 |
|
49 |
-
tok = AutoTokenizer.from_pretrained('
|
50 |
-
model = AutoModel.from_pretrained('
|
51 |
```
|
52 |
|
53 |
|
@@ -58,7 +58,7 @@ This model is fine-tuned on the SUC 3.0 dataset. Using the Huggingface pipeline
|
|
58 |
```python
|
59 |
from transformers import pipeline
|
60 |
|
61 |
-
nlp = pipeline('ner', model='
|
62 |
|
63 |
nlp('Idag släpper KB tre språkmodeller.')
|
64 |
```
|
@@ -109,8 +109,8 @@ The easiest way to do this is, again, using Huggingface Transformers:
|
|
109 |
```python
|
110 |
from transformers import AutoModel,AutoTokenizer
|
111 |
|
112 |
-
tok = AutoTokenizer.from_pretrained('
|
113 |
-
model = AutoModel.from_pretrained('
|
114 |
```
|
115 |
|
116 |
## Acknowledgements ❤️
|
|
|
46 |
```python
|
47 |
from transformers import AutoModel,AutoTokenizer
|
48 |
|
49 |
+
tok = AutoTokenizer.from_pretrained('KBLab/bert-base-swedish-cased')
|
50 |
+
model = AutoModel.from_pretrained('KBLab/bert-base-swedish-cased')
|
51 |
```
|
52 |
|
53 |
|
|
|
58 |
```python
|
59 |
from transformers import pipeline
|
60 |
|
61 |
+
nlp = pipeline('ner', model='KBLab/bert-base-swedish-cased-ner', tokenizer='KBLab/bert-base-swedish-cased-ner')
|
62 |
|
63 |
nlp('Idag släpper KB tre språkmodeller.')
|
64 |
```
|
|
|
109 |
```python
|
110 |
from transformers import AutoModel,AutoTokenizer
|
111 |
|
112 |
+
tok = AutoTokenizer.from_pretrained('KBLab/albert-base-swedish-cased-alpha'),
|
113 |
+
model = AutoModel.from_pretrained('KBLab/albert-base-swedish-cased-alpha')
|
114 |
```
|
115 |
|
116 |
## Acknowledgements ❤️
|