Jimmy19991222's picture
Upload folder using huggingface_hub
c501c5e verified
---
library_name: transformers
license: llama3
base_model: meta-llama/Meta-Llama-3-8B-Instruct
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- princeton-nlp/llama3-ultrafeedback-armorm
model-index:
- name: llama-3-8b-instruct-gapo-v2-rougeL-beta2-he-scale-gamma0.3-lr2.0e-6
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# llama-3-8b-instruct-gapo-v2-rougeL-beta2-he-scale-gamma0.3-lr2.0e-6
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the princeton-nlp/llama3-ultrafeedback-armorm dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3499
- Rewards/chosen: -11.9406
- Rewards/rejected: -16.3570
- Rewards/accuracies: 0.9004
- Rewards/margins: 4.4164
- Logps/rejected: -8.1785
- Logps/chosen: -5.9703
- Logits/rejected: -1.3845
- Logits/chosen: -1.3878
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.3805 | 0.8550 | 400 | 0.3499 | -11.9406 | -16.3570 | 0.9004 | 4.4164 | -8.1785 | -5.9703 | -1.3845 | -1.3878 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.2.0
- Datasets 2.21.0
- Tokenizers 0.19.1