Edit model card

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: IndexTeam/Index-1.9B-Chat
model_type: IndexForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: gardner/glaive-function-calling-v2-sharegpt
    type: sharegpt
    conversation: index_chat
dataset_prepared_path: last_run_prepared
val_set_size: 0.05
output_dir: ./outputs/out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
trust_remote_code: true

wandb_project: index-1.9b
wandb_entity:
wandb_watch:
wandb_name: index-1.9b
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 5e-6

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 100
evals_per_epoch: 2
eval_table_size:
saves_per_epoch: 2
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  pad_token: </s>

Visualize in Weights & Biases

outputs/out

This model is a fine-tuned version of IndexTeam/Index-1.9B-Chat on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
5.3244 0.0021 1 5.2299
0.6569 0.4992 237 0.6106
0.5053 0.9984 474 0.5233
0.472 1.4779 711 0.5007
0.4849 1.9771 948 0.4863
0.4611 2.4576 1185 0.4794
0.3926 2.9568 1422 0.4756
0.4171 3.4368 1659 0.4747
0.4246 3.9360 1896 0.4745

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2+cu118
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
4
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for IntervitensInc/Index-1.9b-glaive

Finetuned
(1)
this model