TeTO-MS-8x7b / README.md
InferenceIllusionist's picture
Update README.md
cbd5c24 verified
|
raw
history blame
3.66 kB
metadata
license: cc-by-nc-4.0
tags:
  - conversational
  - mixtral
  - merge
  - mergekit

TeTO-MS-8x7b

Tesoro + Typhon + OpenGPT

Presenting a Model Stock experiment combining the unique strengths from the following 8x7b Mixtral models:

  • Tess-2.0-Mixtral-8x7B-v0.2 / migtissera / General Purpose
  • Typhon-Mixtral-v1 / Sao10K / Creative & Story Completion
  • Open_Gpt4_8x7B_v0.2 / rombodawg / Conversational

Weighted (iMat) GGUFS: https://huggingface.co/Quant-Cartel/TeTO-MS-8x7b-iMat-GGUF

EXL2 rpcal courtsey of Quant Cartel: https://huggingface.co/Quant-Cartel/TeTO-MS-8x7b-exl2-rpcal

Recommended Template

  • Basic: Alpaca Format
  • Advanced: See context/instruct/sampler settings in our new Recommended Settings repo.
  • Huge shout out to rAIfle for his original work on the Wizard 8x22b templates which were modified for this model.

Methodology

[I]nnovative layer-wise weight averaging technique surpasses state-of-the-art model methods such as Model Soup, utilizing only two fine-tuned models. This strategy can be aptly coined Model Stock, highlighting its reliance on selecting a minimal number of models to draw a more optimized-averaged model (From arXiv:2403.19522)

  • Methodology and merging process was based on the following paper - Model Stock: All we need is just a few fine-tuned models
  • Initial model selection was based on top performing models of Mixtral architecture covering a variety of use cases and skills
  • Base model (Mixtral Instruct 8x7b v0.1) was chosen after outperforming two other potential base models in terms of MMLU benchmark performance.

Output

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the Model Stock merge method using Mixtral-8x7B-v0.1-Instruct as a base.

Models Merged

The following models were included in the merge:

  • migtissera_Tess-2.0-Mixtral-8x7B-v0.2
  • rombodawg_Open_Gpt4_8x7B_v0.2
  • Sao10K_Typhon-Mixtral-v1

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: models/migtissera_Tess-2.0-Mixtral-8x7B-v0.2
  - model: models/Sao10K_Typhon-Mixtral-v1
  - model: models/rombodawg_Open_Gpt4_8x7B_v0.2 
merge_method: model_stock
base_model: models/Mixtral-8x7B-v0.1-Instruct
dtype: float16

Appendix - Llama.cpp MMLU Benchmark Results*

These results were calculated via perplexity.exe from llama.cpp using the following params:

.\perplexity -m .\models\TeTO-8x7b-MS-v0.03\TeTO-MS-8x7b-Q6_K.gguf -bf .\evaluations\mmlu-test.bin --multiple-choice -c 8192 -t 23 -ngl 200

* V0.01 (4 model / Mixtral Base):
    Final result: 43.3049 +/- 0.4196
    Random chance: 25.0000 +/- 0.3667


* V0.02 (3 model / Tess Mixtral Base):
    Final result: 43.8356 +/- 0.4202
    Random chance: 25.0000 +/- 0.3667


* V0.03 (4 model / Mixtral Instruct Base):
    Final result: 45.7004 +/- 0.4219
    Random chance: 25.0000 +/- 0.3667

*Please be advised metrics above are not representative of final HF benchmark scores for reasons given here