language:
- id
- en
license: cc-by-nc-sa-4.0
datasets:
- wikipedia
- Ichsan2895/OASST_Top1_Indonesian
- Ichsan2895/alpaca-gpt4-indonesian
pipeline_tag: text-generation
model-index:
- name: Merak-7B-v5-PROTOTYPE1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 62.2
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 82.07
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 60.97
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 45.41
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 77.9
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 37.23
name: accuracy
source:
url: >-
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Ichsan2895/Merak-7B-v5-PROTOTYPE1
name: Open LLM Leaderboard
THIS IS 1st PROTOTYPE OF MERAK-7B-v5!
Merak-7B is the Large Language Model of Indonesian Language
This model is based on Mistral-7B-OpenOrca and fine tuned by some of Indonesia Wikipedia articles that I cleaned before.
Leveraging QLoRA (QLora: Efficient Finetuning of Quantized LLMs), Merak-7B is able to run with 16 GB VRAM. We also use DPO-Trainer for RLHF with TRL library..
Licensed under Creative Commons-By Attribution-Share Alike-Non Commercial (CC-BY-SA-NC 4.0) Merak-7B empowers AI enthusiasts, researchers alike.
Big thanks to all my friends and communities that help to build our first model. Thanks for Axolotl for a great fine tuning tool which designed to streamline the fine-tuning of various AI models.
Feel free, to ask me about the model and please share the news on your social media.
CITATION
@software{lian2023mistralorca1
title = {MistralOrca: Mistral-7B Model Instruct-tuned on Filtered OpenOrcaV1 GPT-4 Dataset},
author = {Wing Lian and Bleys Goodson and Guan Wang and Eugene Pentland and Austin Cook and Chanvichet Vong and "Teknium"},
year = {2023},
publisher = {HuggingFace},
journal = {HuggingFace repository},
howpublished = {\url{https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca},
}
@misc{mukherjee2023orca,
title={Orca: Progressive Learning from Complex Explanation Traces of GPT-4},
author={Subhabrata Mukherjee and Arindam Mitra and Ganesh Jawahar and Sahaj Agarwal and Hamid Palangi and Ahmed Awadallah},
year={2023},
eprint={2306.02707},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@ONLINE{wikidump,
author = "Wikimedia Foundation",
title = "Wikimedia Downloads",
url = "https://dumps.wikimedia.org"
}
@inproceedings{wolf-etal-2020-transformers,
title = "Transformers: State-of-the-Art Natural Language Processing",
author = "Thomas Wolf and Lysandre Debut and Victor Sanh and Julien Chaumond and Clement Delangue and Anthony Moi and Pierric Cistac and Tim Rault and Rémi Louf and Morgan Funtowicz and Joe Davison and Sam Shleifer and Patrick von Platen and Clara Ma and Yacine Jernite and Julien Plu and Canwen Xu and Teven Le Scao and Sylvain Gugger and Mariama Drame and Quentin Lhoest and Alexander M. Rush",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations",
month = oct,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.emnlp-demos.6",
pages = "38--45"
}
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/trl}}
}
@article{dettmers2023qlora,
title = {QLoRA: Efficient Finetuning of Quantized LLMs},
author = {Dettmers, Tim and Pagnoni, Artidoro and Holtzman, Ari and Zettlemoyer, Luke},
journal = {arXiv preprint arXiv:2305.14314},
year = {2023}
}
HOW TO CITE THIS PROJECT
If you use the Merak-7B model in your research or project, please cite it as:
@article{Merak,
title={Merak-7B: The LLM for Bahasa Indonesia},
author={Muhammad Ichsan},
publisher={Hugging Face}
journal={Hugging Face Repository},
year={2023}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 60.96 |
AI2 Reasoning Challenge (25-Shot) | 62.20 |
HellaSwag (10-Shot) | 82.07 |
MMLU (5-Shot) | 60.97 |
TruthfulQA (0-shot) | 45.41 |
Winogrande (5-shot) | 77.90 |
GSM8k (5-shot) | 37.23 |