deeepfake-audio-555 / README.md
Hemg's picture
Model save
0ffa5f0 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - accuracy
model-index:
  - name: deeepfake-audio-555
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9247311827956989

deeepfake-audio-555

This model is a fine-tuned version of facebook/wav2vec2-base on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4156
  • Accuracy: 0.9247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 16

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6428 1.0 46 0.6271 0.7204
0.4622 2.0 92 0.4054 0.8602
0.3098 3.0 138 0.5667 0.8172
0.2696 4.0 184 0.4179 0.8817
0.2806 5.0 230 0.4129 0.8710
0.2078 6.0 276 0.3541 0.9140
0.1652 7.0 322 0.3338 0.9140
0.0871 8.0 368 0.4072 0.9140
0.1267 9.0 414 0.3649 0.9247
0.0651 10.0 460 0.3436 0.9355
0.0976 11.0 506 0.4163 0.9140
0.0186 12.0 552 0.4164 0.9247
0.0324 13.0 598 0.4156 0.9247

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2