Add multilingual to the language tag
#3
by
lbourdois
- opened
README.md
CHANGED
@@ -2,205 +2,190 @@
|
|
2 |
language:
|
3 |
- en
|
4 |
- fr
|
|
|
|
|
5 |
tags:
|
6 |
- translation
|
7 |
- opus-mt-tc
|
8 |
-
license: cc-by-4.0
|
9 |
model-index:
|
10 |
- name: opus-mt-tc-big-fr-en
|
11 |
results:
|
12 |
- task:
|
13 |
-
name: Translation fra-eng
|
14 |
type: translation
|
15 |
-
|
16 |
dataset:
|
17 |
name: flores101-devtest
|
18 |
type: flores_101
|
19 |
args: fra eng devtest
|
20 |
metrics:
|
21 |
-
-
|
22 |
-
type: bleu
|
23 |
value: 46.0
|
|
|
24 |
- task:
|
25 |
-
name: Translation fra-eng
|
26 |
type: translation
|
27 |
-
|
28 |
dataset:
|
29 |
name: multi30k_test_2016_flickr
|
30 |
type: multi30k-2016_flickr
|
31 |
args: fra-eng
|
32 |
metrics:
|
33 |
-
-
|
34 |
-
type: bleu
|
35 |
value: 49.7
|
|
|
36 |
- task:
|
37 |
-
name: Translation fra-eng
|
38 |
type: translation
|
39 |
-
|
40 |
dataset:
|
41 |
name: multi30k_test_2017_flickr
|
42 |
type: multi30k-2017_flickr
|
43 |
args: fra-eng
|
44 |
metrics:
|
45 |
-
-
|
46 |
-
type: bleu
|
47 |
value: 52.0
|
|
|
48 |
- task:
|
49 |
-
name: Translation fra-eng
|
50 |
type: translation
|
51 |
-
|
52 |
dataset:
|
53 |
name: multi30k_test_2017_mscoco
|
54 |
type: multi30k-2017_mscoco
|
55 |
args: fra-eng
|
56 |
metrics:
|
57 |
-
-
|
58 |
-
type: bleu
|
59 |
value: 50.6
|
|
|
60 |
- task:
|
61 |
-
name: Translation fra-eng
|
62 |
type: translation
|
63 |
-
|
64 |
dataset:
|
65 |
name: multi30k_test_2018_flickr
|
66 |
type: multi30k-2018_flickr
|
67 |
args: fra-eng
|
68 |
metrics:
|
69 |
-
-
|
70 |
-
type: bleu
|
71 |
value: 44.9
|
|
|
72 |
- task:
|
73 |
-
name: Translation fra-eng
|
74 |
type: translation
|
75 |
-
|
76 |
dataset:
|
77 |
name: news-test2008
|
78 |
type: news-test2008
|
79 |
args: fra-eng
|
80 |
metrics:
|
81 |
-
-
|
82 |
-
type: bleu
|
83 |
value: 26.5
|
|
|
84 |
- task:
|
85 |
-
name: Translation fra-eng
|
86 |
type: translation
|
87 |
-
|
88 |
dataset:
|
89 |
name: newsdiscussdev2015
|
90 |
type: newsdiscussdev2015
|
91 |
args: fra-eng
|
92 |
metrics:
|
93 |
-
-
|
94 |
-
type: bleu
|
95 |
value: 34.4
|
|
|
96 |
- task:
|
97 |
-
name: Translation fra-eng
|
98 |
type: translation
|
99 |
-
|
100 |
dataset:
|
101 |
name: newsdiscusstest2015
|
102 |
type: newsdiscusstest2015
|
103 |
args: fra-eng
|
104 |
metrics:
|
105 |
-
-
|
106 |
-
type: bleu
|
107 |
value: 40.2
|
|
|
108 |
- task:
|
109 |
-
name: Translation fra-eng
|
110 |
type: translation
|
111 |
-
|
112 |
dataset:
|
113 |
name: tatoeba-test-v2021-08-07
|
114 |
type: tatoeba_mt
|
115 |
args: fra-eng
|
116 |
metrics:
|
117 |
-
-
|
118 |
-
type: bleu
|
119 |
value: 59.8
|
|
|
120 |
- task:
|
121 |
-
name: Translation fra-eng
|
122 |
type: translation
|
123 |
-
|
124 |
dataset:
|
125 |
name: tico19-test
|
126 |
type: tico19-test
|
127 |
args: fra-eng
|
128 |
metrics:
|
129 |
-
-
|
130 |
-
type: bleu
|
131 |
value: 41.3
|
|
|
132 |
- task:
|
133 |
-
name: Translation fra-eng
|
134 |
type: translation
|
135 |
-
|
136 |
dataset:
|
137 |
name: newstest2009
|
138 |
type: wmt-2009-news
|
139 |
args: fra-eng
|
140 |
metrics:
|
141 |
-
-
|
142 |
-
type: bleu
|
143 |
value: 30.4
|
|
|
144 |
- task:
|
145 |
-
name: Translation fra-eng
|
146 |
type: translation
|
147 |
-
|
148 |
dataset:
|
149 |
name: newstest2010
|
150 |
type: wmt-2010-news
|
151 |
args: fra-eng
|
152 |
metrics:
|
153 |
-
-
|
154 |
-
type: bleu
|
155 |
value: 33.4
|
|
|
156 |
- task:
|
157 |
-
name: Translation fra-eng
|
158 |
type: translation
|
159 |
-
|
160 |
dataset:
|
161 |
name: newstest2011
|
162 |
type: wmt-2011-news
|
163 |
args: fra-eng
|
164 |
metrics:
|
165 |
-
-
|
166 |
-
type: bleu
|
167 |
value: 33.8
|
|
|
168 |
- task:
|
169 |
-
name: Translation fra-eng
|
170 |
type: translation
|
171 |
-
|
172 |
dataset:
|
173 |
name: newstest2012
|
174 |
type: wmt-2012-news
|
175 |
args: fra-eng
|
176 |
metrics:
|
177 |
-
-
|
178 |
-
type: bleu
|
179 |
value: 33.6
|
|
|
180 |
- task:
|
181 |
-
name: Translation fra-eng
|
182 |
type: translation
|
183 |
-
|
184 |
dataset:
|
185 |
name: newstest2013
|
186 |
type: wmt-2013-news
|
187 |
args: fra-eng
|
188 |
metrics:
|
189 |
-
-
|
190 |
-
type: bleu
|
191 |
value: 34.8
|
|
|
192 |
- task:
|
193 |
-
name: Translation fra-eng
|
194 |
type: translation
|
195 |
-
|
196 |
dataset:
|
197 |
name: newstest2014
|
198 |
type: wmt-2014-news
|
199 |
args: fra-eng
|
200 |
metrics:
|
201 |
-
-
|
202 |
-
type: bleu
|
203 |
value: 39.4
|
|
|
204 |
---
|
205 |
# opus-mt-tc-big-fr-en
|
206 |
|
@@ -208,7 +193,7 @@ Neural machine translation model for translating from French (fr) to English (en
|
|
208 |
|
209 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
210 |
|
211 |
-
* Publications: [OPUS-MT
|
212 |
|
213 |
```
|
214 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
@@ -255,8 +240,8 @@ A short example code:
|
|
255 |
from transformers import MarianMTModel, MarianTokenizer
|
256 |
|
257 |
src_text = [
|
258 |
-
"J'ai
|
259 |
-
"C'
|
260 |
]
|
261 |
|
262 |
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
|
@@ -277,7 +262,7 @@ You can also use OPUS-MT models with the transformers pipelines, for example:
|
|
277 |
```python
|
278 |
from transformers import pipeline
|
279 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
|
280 |
-
print(pipe("J'ai
|
281 |
|
282 |
# expected output: I loved England.
|
283 |
```
|
@@ -311,7 +296,7 @@ print(pipe("J'ai adoré l'Angleterre."))
|
|
311 |
|
312 |
## Acknowledgements
|
313 |
|
314 |
-
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union
|
315 |
|
316 |
## Model conversion info
|
317 |
|
|
|
2 |
language:
|
3 |
- en
|
4 |
- fr
|
5 |
+
- multilingual
|
6 |
+
license: cc-by-4.0
|
7 |
tags:
|
8 |
- translation
|
9 |
- opus-mt-tc
|
|
|
10 |
model-index:
|
11 |
- name: opus-mt-tc-big-fr-en
|
12 |
results:
|
13 |
- task:
|
|
|
14 |
type: translation
|
15 |
+
name: Translation fra-eng
|
16 |
dataset:
|
17 |
name: flores101-devtest
|
18 |
type: flores_101
|
19 |
args: fra eng devtest
|
20 |
metrics:
|
21 |
+
- type: bleu
|
|
|
22 |
value: 46.0
|
23 |
+
name: BLEU
|
24 |
- task:
|
|
|
25 |
type: translation
|
26 |
+
name: Translation fra-eng
|
27 |
dataset:
|
28 |
name: multi30k_test_2016_flickr
|
29 |
type: multi30k-2016_flickr
|
30 |
args: fra-eng
|
31 |
metrics:
|
32 |
+
- type: bleu
|
|
|
33 |
value: 49.7
|
34 |
+
name: BLEU
|
35 |
- task:
|
|
|
36 |
type: translation
|
37 |
+
name: Translation fra-eng
|
38 |
dataset:
|
39 |
name: multi30k_test_2017_flickr
|
40 |
type: multi30k-2017_flickr
|
41 |
args: fra-eng
|
42 |
metrics:
|
43 |
+
- type: bleu
|
|
|
44 |
value: 52.0
|
45 |
+
name: BLEU
|
46 |
- task:
|
|
|
47 |
type: translation
|
48 |
+
name: Translation fra-eng
|
49 |
dataset:
|
50 |
name: multi30k_test_2017_mscoco
|
51 |
type: multi30k-2017_mscoco
|
52 |
args: fra-eng
|
53 |
metrics:
|
54 |
+
- type: bleu
|
|
|
55 |
value: 50.6
|
56 |
+
name: BLEU
|
57 |
- task:
|
|
|
58 |
type: translation
|
59 |
+
name: Translation fra-eng
|
60 |
dataset:
|
61 |
name: multi30k_test_2018_flickr
|
62 |
type: multi30k-2018_flickr
|
63 |
args: fra-eng
|
64 |
metrics:
|
65 |
+
- type: bleu
|
|
|
66 |
value: 44.9
|
67 |
+
name: BLEU
|
68 |
- task:
|
|
|
69 |
type: translation
|
70 |
+
name: Translation fra-eng
|
71 |
dataset:
|
72 |
name: news-test2008
|
73 |
type: news-test2008
|
74 |
args: fra-eng
|
75 |
metrics:
|
76 |
+
- type: bleu
|
|
|
77 |
value: 26.5
|
78 |
+
name: BLEU
|
79 |
- task:
|
|
|
80 |
type: translation
|
81 |
+
name: Translation fra-eng
|
82 |
dataset:
|
83 |
name: newsdiscussdev2015
|
84 |
type: newsdiscussdev2015
|
85 |
args: fra-eng
|
86 |
metrics:
|
87 |
+
- type: bleu
|
|
|
88 |
value: 34.4
|
89 |
+
name: BLEU
|
90 |
- task:
|
|
|
91 |
type: translation
|
92 |
+
name: Translation fra-eng
|
93 |
dataset:
|
94 |
name: newsdiscusstest2015
|
95 |
type: newsdiscusstest2015
|
96 |
args: fra-eng
|
97 |
metrics:
|
98 |
+
- type: bleu
|
|
|
99 |
value: 40.2
|
100 |
+
name: BLEU
|
101 |
- task:
|
|
|
102 |
type: translation
|
103 |
+
name: Translation fra-eng
|
104 |
dataset:
|
105 |
name: tatoeba-test-v2021-08-07
|
106 |
type: tatoeba_mt
|
107 |
args: fra-eng
|
108 |
metrics:
|
109 |
+
- type: bleu
|
|
|
110 |
value: 59.8
|
111 |
+
name: BLEU
|
112 |
- task:
|
|
|
113 |
type: translation
|
114 |
+
name: Translation fra-eng
|
115 |
dataset:
|
116 |
name: tico19-test
|
117 |
type: tico19-test
|
118 |
args: fra-eng
|
119 |
metrics:
|
120 |
+
- type: bleu
|
|
|
121 |
value: 41.3
|
122 |
+
name: BLEU
|
123 |
- task:
|
|
|
124 |
type: translation
|
125 |
+
name: Translation fra-eng
|
126 |
dataset:
|
127 |
name: newstest2009
|
128 |
type: wmt-2009-news
|
129 |
args: fra-eng
|
130 |
metrics:
|
131 |
+
- type: bleu
|
|
|
132 |
value: 30.4
|
133 |
+
name: BLEU
|
134 |
- task:
|
|
|
135 |
type: translation
|
136 |
+
name: Translation fra-eng
|
137 |
dataset:
|
138 |
name: newstest2010
|
139 |
type: wmt-2010-news
|
140 |
args: fra-eng
|
141 |
metrics:
|
142 |
+
- type: bleu
|
|
|
143 |
value: 33.4
|
144 |
+
name: BLEU
|
145 |
- task:
|
|
|
146 |
type: translation
|
147 |
+
name: Translation fra-eng
|
148 |
dataset:
|
149 |
name: newstest2011
|
150 |
type: wmt-2011-news
|
151 |
args: fra-eng
|
152 |
metrics:
|
153 |
+
- type: bleu
|
|
|
154 |
value: 33.8
|
155 |
+
name: BLEU
|
156 |
- task:
|
|
|
157 |
type: translation
|
158 |
+
name: Translation fra-eng
|
159 |
dataset:
|
160 |
name: newstest2012
|
161 |
type: wmt-2012-news
|
162 |
args: fra-eng
|
163 |
metrics:
|
164 |
+
- type: bleu
|
|
|
165 |
value: 33.6
|
166 |
+
name: BLEU
|
167 |
- task:
|
|
|
168 |
type: translation
|
169 |
+
name: Translation fra-eng
|
170 |
dataset:
|
171 |
name: newstest2013
|
172 |
type: wmt-2013-news
|
173 |
args: fra-eng
|
174 |
metrics:
|
175 |
+
- type: bleu
|
|
|
176 |
value: 34.8
|
177 |
+
name: BLEU
|
178 |
- task:
|
|
|
179 |
type: translation
|
180 |
+
name: Translation fra-eng
|
181 |
dataset:
|
182 |
name: newstest2014
|
183 |
type: wmt-2014-news
|
184 |
args: fra-eng
|
185 |
metrics:
|
186 |
+
- type: bleu
|
|
|
187 |
value: 39.4
|
188 |
+
name: BLEU
|
189 |
---
|
190 |
# opus-mt-tc-big-fr-en
|
191 |
|
|
|
193 |
|
194 |
This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train).
|
195 |
|
196 |
+
* Publications: [OPUS-MT � Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge � Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.)
|
197 |
|
198 |
```
|
199 |
@inproceedings{tiedemann-thottingal-2020-opus,
|
|
|
240 |
from transformers import MarianMTModel, MarianTokenizer
|
241 |
|
242 |
src_text = [
|
243 |
+
"J'ai ador� l'Angleterre.",
|
244 |
+
"C'�tait la seule chose � faire."
|
245 |
]
|
246 |
|
247 |
model_name = "pytorch-models/opus-mt-tc-big-fr-en"
|
|
|
262 |
```python
|
263 |
from transformers import pipeline
|
264 |
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fr-en")
|
265 |
+
print(pipe("J'ai ador� l'Angleterre."))
|
266 |
|
267 |
# expected output: I loved England.
|
268 |
```
|
|
|
296 |
|
297 |
## Acknowledgements
|
298 |
|
299 |
+
The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union�s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union�s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland.
|
300 |
|
301 |
## Model conversion info
|
302 |
|