patrickvonplaten's picture
Add `opus-mt-tc` tag (#1)
f1e8639
|
raw
history blame
6.74 kB
metadata
language:
  - fi
  - ru
  - uk
  - zle
tags:
  - translation
  - opus-mt-tc
license: cc-by-4.0
model-index:
  - name: opus-mt-tc-big-fi-zle
    results:
      - task:
          name: Translation fin-rus
          type: translation
          args: fin-rus
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fin rus devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 21.4
      - task:
          name: Translation fin-ukr
          type: translation
          args: fin-ukr
        dataset:
          name: flores101-devtest
          type: flores_101
          args: fin ukr devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 17.9
      - task:
          name: Translation fin-rus
          type: translation
          args: fin-rus
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: fin-rus
        metrics:
          - name: BLEU
            type: bleu
            value: 47

opus-mt-tc-big-fi-zle

Neural machine translation model for translating from Finnish (fi) to East Slavic languages (zle).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >>rus<<

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>rus<< Äänestimme jo.",
    ">>ukr<< Yksi, kaksi, kolme, neljä, viisi, kuusi, seitsemän, kahdeksan, yhdeksän, kymmenen."
]

model_name = "pytorch-models/opus-mt-tc-big-fi-zle"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Мы уже проголосовали.
#     Один, два, три, чотири, п'ять, шість, сім, вісім, дев'ять, десять.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-fi-zle")
print(pipe(">>rus<< Äänestimme jo."))

# expected output: Мы уже проголосовали.

Benchmarks

langpair testset chr-F BLEU #sent #words
fin-rus tatoeba-test-v2021-08-07 0.67247 47.0 3643 21497
fin-rus flores101-devtest 0.49920 21.4 1012 23295
fin-ukr flores101-devtest 0.46935 17.9 1012 22810

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 42126b6
  • port time: Thu Mar 24 09:34:57 EET 2022
  • port machine: LM0-400-22516.local