NEPALIGPT-1.0 / README.md
Heem2's picture
Update README.md
e0852e2 verified
---
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- unsloth
- mistral
- trl
- sft
base_model: unsloth/mistral-7b-bnb-4bit
---
# Nepali GPT
Nepali GPT is a large Nepali language fine-tuned model based on Mixtral_7B.The fine-tuning process uses Unsloth, expediting the training process for optimal efficiency.
## Model Description
* Model type: A 7B fine-tuned model
* Primary Language(s): Nepali
* License: Mistral
### Installation
```
#Install Unsloth
%%capture
import torch
major_version, minor_version = torch.cuda.get_device_capability()
# Must install separately since Colab has torch 2.2.1, which breaks packages
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
if major_version >= 8:
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
else:
# Use this for older GPUs (V100, Tesla T4, RTX 20xx)
!pip install --no-deps xformers trl peft accelerate bitsandbytes
pass
```
### Model loading
```
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "Heem2/NEPALIGPT-1.0",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{}
### Input:
{}
### Response:
{}"""
```
### Inference
```
#sample 1
FastLanguageModel.for_inference(model)
inputs = tokenizer(
[
prompt.format(
"नेपालको बारेमा व्याख्या गर्नुहोस्?", # instruction
"संस्कृति, भाषा, भूगोल, राजनीति, जलवायु", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens = 1000, use_cache = True)
tokenizer.batch_decode(outputs)
#sample 2
# prompt = Copied from above
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
prompt.format(
"मानिसहरू किन मर्छन्?", # instruction
"रोग, बृद्धावस्था, आत्महत्या, दुर्घटना", # input
"", # output - leave this blank for generation!
)
], return_tensors = "pt").to("cuda")
from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 1000)
#output
मानिसहरू मर्छन् धेरै कारणहरूको लागि, जसमा समावेश छन्:
१. रोग: मानिसहरू मर्छन् किनभने उनीहरूले प्राप्त गर्न सक्ने विभिन्न रोगहरूको कारण हुन सक्छ। यी रोगहरूमा क्यान्सर, स्ट्रोक, मधुमेह, र हृदय रोग समावेश छन्।
२. बृद्धावस्था: बृद्धिको समयमा मानिसहरू मर्छन् किनभने उनीहरूको शरीरले प्राकृतिक रूपमा परिवर्तन हुन्छ र उनीहरूको स्वास्थ्यमा कमी आउन सक्छ। यसले उनीहरूलाई अन्य रोगहरू वा अन्य कारणहरूको कारण मृत्यु हुन सक्छ।
३. आत्महत्या: मानिसहरू आत्महत्या गर्छन् किनभने उनीहरूले आफ्नो जीवनको अन्त्य गर्न चाहन्छन् वा उनीहरूको स्वास्थ्य वा समाजमा अन्य कारणहरूको कारण मृत्यु हुन सक्छ।
४. दुर्घटना: मानिसहरू दुर्घटनाको कारण मृत्यु हुन सक्छन्, जस्तै सडक दुर्घटना, पानीको दुर्घटना, वा अन्य दुर्घटनाहरू। यी दुर्घटनाहरू अक्सर अन्तर्निहित कारणहरूको कारण हुन्छन्, जस्तै अन्तर्निहित कार्यहरू वा अन्य कारणहरूको कारण हुन सक्छ।
```
### Citation Information
If you find this model useful, please consider giving 👏 and citing:
```
@heem2
}
```
### Contributions
- This is developed by Hem Bahadur Gurung.Feel free to DM if you have any questions.