|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- audiofolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: deeepfake-audio-Recognition-ttoo |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: audiofolder |
|
type: audiofolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9545454545454546 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# deeepfake-audio-Recognition-ttoo |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2288 |
|
- Accuracy: 0.9545 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
The model still needs dataset to increase model accuracy. |
|
|
|
## Training and evaluation data |
|
|
|
* The model is trained on multi lingual english speaking dataset. |
|
* The input audio dataset is about 16KHz. |
|
## Training procedure |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.39.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|