|
import numpy as np |
|
import pandas as pd |
|
import torch |
|
from PIL import Image |
|
from skimage.feature import graycomatrix, graycoprops |
|
from torchvision import transforms |
|
|
|
|
|
model = torch.jit.load("SuSy.pt") |
|
|
|
|
|
image = Image.open("midjourney-images-example.jpg") |
|
|
|
|
|
top_k_patches = 5 |
|
patch_size = 224 |
|
|
|
|
|
width, height = image.size |
|
|
|
|
|
num_patches_x = width // patch_size |
|
num_patches_y = height // patch_size |
|
|
|
|
|
patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8) |
|
for i in range(num_patches_x): |
|
for j in range(num_patches_y): |
|
x = i * patch_size |
|
y = j * patch_size |
|
patch = image.crop((x, y, x + patch_size, y + patch_size)) |
|
patches[i * num_patches_y + j] = np.array(patch) |
|
|
|
|
|
dissimilarity_scores = [] |
|
for patch in patches: |
|
transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()]) |
|
grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0) |
|
glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True) |
|
dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0]) |
|
|
|
|
|
sorted_indices = np.argsort(dissimilarity_scores)[::-1] |
|
|
|
|
|
top_patches = patches[sorted_indices[:top_k_patches]] |
|
top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0 |
|
|
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
preds = model(top_patches) |
|
|
|
|
|
classes = ['authentic', 'dalle-3-images', 'diffusiondb', 'midjourney-images', 'midjourney_tti', 'realisticSDXL'] |
|
result = pd.DataFrame(preds.numpy(), columns=classes) |
|
print(result) |