import numpy as np import pandas as pd import torch from PIL import Image from skimage.feature import graycomatrix, graycoprops from torchvision import transforms # Load the model model = torch.jit.load("SuSy.pt") # Load the image image = Image.open("midjourney-images-example.jpg") # Set Parameters top_k_patches = 5 patch_size = 224 # Get the image dimensions width, height = image.size # Calculate the number of patches num_patches_x = width // patch_size num_patches_y = height // patch_size # Divide the image in patches patches = np.zeros((num_patches_x * num_patches_y, patch_size, patch_size, 3), dtype=np.uint8) for i in range(num_patches_x): for j in range(num_patches_y): x = i * patch_size y = j * patch_size patch = image.crop((x, y, x + patch_size, y + patch_size)) patches[i * num_patches_y + j] = np.array(patch) # Compute the most relevant patches (optional) dissimilarity_scores = [] for patch in patches: transform_patch = transforms.Compose([transforms.PILToTensor(), transforms.Grayscale()]) grayscale_patch = transform_patch(Image.fromarray(patch)).squeeze(0) glcm = graycomatrix(grayscale_patch, [5], [0], 256, symmetric=True, normed=True) dissimilarity_scores.append(graycoprops(glcm, "contrast")[0, 0]) # Sort patch indices by their dissimilarity score sorted_indices = np.argsort(dissimilarity_scores)[::-1] # Extract top k patches and convert them to tensor top_patches = patches[sorted_indices[:top_k_patches]] top_patches = torch.from_numpy(np.transpose(top_patches, (0, 3, 1, 2))) / 255.0 # Predict patches model.eval() with torch.no_grad(): preds = model(top_patches) # Print results classes = ['authentic', 'dalle-3-images', 'diffusiondb', 'midjourney-images', 'midjourney_tti', 'realisticSDXL'] result = pd.DataFrame(preds.numpy(), columns=classes) print(result)