|
--- |
|
# dialogue-bart-large-chinese |
|
This is a seq2seq model fine-tuned on several Chinese dialogue datasets, from bart-large-chinese. |
|
|
|
|
|
# Datasets |
|
We utilize 4 Chinese dialogue datasets from [LUGE](https://www.luge.ai/#/) |
|
|
|
| | | | |
|
| ---- | ---- | ---- | |
|
| | Count | Domain | |
|
| Chinese Persona Chat (CPC) | 23,000 | Open | |
|
| LCCC | 11,987,759 | Open | |
|
| Emotional STC (ESTC) | 899,207 | Open | |
|
| KdConv | 3,000 | Movie, Music, Travel | |
|
| | | | |
|
|
|
|
|
# Data format |
|
Input: `[CLS] 对话历史:<history> 知识:<knowledge> [SEP]` |
|
Output: `[CLS] <response> [SEP]` |
|
|
|
|
|
# Example |
|
```python |
|
from transformers import BertTokenizer, BartForConditionalGeneration |
|
|
|
# Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer |
|
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") |
|
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese") |
|
|
|
# an example from CPC dev data |
|
history = ["可以 认识 一下 吗 ?", "当然 可以 啦 , 你好 。", "嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?", "我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。"] |
|
history_str = "对话历史:" + tokenizer.sep_token.join(history) |
|
input_ids = tokenizer(history_str, return_tensors='pt').input_ids |
|
output_ids = model.generate(input_ids)[0] |
|
print(tokenizer.decode(output_ids)) |
|
``` |