File size: 1,881 Bytes
751be9e f480fc2 774a2c8 7b402da 824e6bf 774a2c8 ab93ca6 d012232 ac545ce ab93ca6 1090b08 5d4a67f 1090b08 ab93ca6 85e7694 ab93ca6 85e7694 e000310 71bb42a e000310 85e7694 ac545ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
language:
- zh
thumbnail: "url to a thumbnail used in social sharing"
tags:
- bart-large-chinese
datasets:
- Chinese Persona Chat (CPC)
- LCCC
- Emotional STC (ESTC)
- KdConv
---
# dialogue-bart-large-chinese
This is a seq2seq model fine-tuned on several Chinese dialogue datasets, from bart-large-chinese.
# Datasets
We utilize 4 Chinese dialogue datasets from [LUGE](https://www.luge.ai/#/)
| | | |
| ---- | ---- | ---- |
| | Count | Domain |
| Chinese Persona Chat (CPC) | 23,000 | Open |
| LCCC | 11,987,759 | Open |
| Emotional STC (ESTC) | 899,207 | Open |
| KdConv | 3,000 | Movie, Music, Travel |
| | | |
# Data format
Input: `[CLS] 对话历史:<history> 知识:<knowledge> [SEP]`
Output: `[CLS] <response> [SEP]`
# Example
```python
from transformers import BertTokenizer, BartForConditionalGeneration
# Note that tokenizer is an object of BertTokenizer, instead of BartTokenizer
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
# an example from CPC dev data
history = ["可以 认识 一下 吗 ?", "当然 可以 啦 , 你好 。", "嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?", "我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。"]
history_str = "对话历史:" + tokenizer.sep_token.join(history)
input_ids = tokenizer(history_str, return_tensors='pt').input_ids
output_ids = model.generate(input_ids)[0]
print(tokenizer.decode(output_ids))
``` |