metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: " \n \n \n\nHIRAKUD POWER / SMELTER\n\n@ - Payment Order\n\n( Address )\n\nEmp.No./S.Code No. Qhle\nby Cash/Cheque/D.D./Transfer the sumof ~ 35, +S0/—\nRupees Thi ei ve therane Seven hun\nFi \\\nMail Id of Initiator: : OF)\n\n \n\n| Details of Payment\n\n;\n| AtMenclance, Cleritage ancl Otner\naa T\n\n|mise: Conveyances for ip eome No. |\n2x to 2-9, 3\\ 32 ano 34 of Qo| 2\n\nURL of payment:\n\nin . TotalRs.| 35, too /]- .\n\nPrepared by Recommended by Endorsed by Authorised By Approved by\n‘ A =\nPort Sara ee\nA ee EU (NY—\nDate 20/ 19 Plant Head Head-F &A Head - Sambalpur Cluster\n\n \n \n\nCharge\nAccount\n\n \n \n\nLeqa2\n\n~ Odisha cluoy\n\nOI) 202 Sefer (90\n\nONLINE PAYMENT\n\n \n\n \n\nCashier\nReceived Payment | Charge Account Checked by\n\nae eee _\n\n \n\nSignature\n\f"
- text: " \n\f"
- text: "Expenses during visit of morning for coal logistic.\n\nSl.no. _ Date Of Visit Particulars Amount Remarks\n1 21-Feb-16 Tea,Snax ager mis. - 105.00 Along with Mr N K Kar\n\n \n \n\n \n\n \n\n \n\nft eee ‘\n~# “Lunch. ° of AVS |\nee ou SATS i\n2 22-Feb-16); | “Fea soe mis, dee aot]\n; 3 . cng! a oa hoy ‘ “e i hs ye eo 1\n3 23-Feb-1600). Téa,Snax Andithis. I Along with Mr'N K Kar .\nee _ |) Lunch... a 00° oO 2 !\n4 24-Feb-16 Tea,Snax And mis. okt? |\nLinch ~ : egthedgtt £92 ox\n5 25-Feb-16\n\nmeted FES entre? i462\n\n- Teaisnax And mis. r AS Vi on\n) ie ihe oe » Lunch eres , Mo\n\n6 26-Feb-16 Tea, Snax And nis,\n\nyeahh! ct\n\nfeo, 7\n\n \n\n \n \n \n \n \n\n, 140.00; - Pend wih iM NK Kar\nlene . : -aaciog par rs :\n’ a7-Febalt Tea,Snax And itis” \"425.00 Along with Mr. K Kar\nLunch 280,00 es _— ,\n8 29-Feb-16 se Tea,Snax And oie Bh i af U5 5.00). \" pe. a!\n9 te Snax ‘And mis. ce n20. to & oe\n\n10\n\neee £50. Alone wit Mr N K Kar bye efort-\n\nevn, enews) :\nLaheue 325. 00 x Up £0 perenne os\neerie coer re ue\n\n \n\n,\n\n11\n\nHf figs bh.\n\n \n\n \n \n \n \n\n \n\n4\n‘\na\nvt wr 4 ‘\n“ane . mae t\nwha via ‘\n‘\n5\n12 {\n_ o |\n\" nay\ni\n¥\n4\n4\n_\ni\nTew. EN at Rbiew: Caen sere 4\ntA eS : f i :\ni — Eyl 3. 4\nes, j Lax > * awe 4\nwe be oy . “ tyne eel\ni ad\n: oe\nSeog) ayM. 44\nwr\na, obo ye eect ee —\n-\n\n \n\f"
- text: "HINDALCO INDUSTRIES LIMITED EMPLOYEES’ PROVIDENT FUND II\n\n| | B)REASON OF LEAVING SERVICE: RESIGNATION\n_ SERVICE TERMINATED ON\n\n \n \n \n \n \n \n \n \n\n \n\n|\n\n| | ACCOUNT OF (A) ILL\nHEALTH OF MEMBER (8)\nCONTRACTION /\n\nDISCONTINUATION — OF\nEMPLOYER'S BUSINESS OR\n\n(C) OTHER CAUSE BEYOND\n\nTHE CONTROL OF THE\n\n| EMBER\n|i PERSONAL REASON _\n\n__\n\nPAYMENT UCO BANK ,HIRAKUD SAMBALPUR ,ODISHA.\n(PLEASE ATTACH A COPY OF cmmntnnmeanisnnennenesennmaneeneisene nese\nCANCELLED CHEQUE/ATTESTED\n| COPY OF FIRST PAGE OF BANK PASS | IFS CODE ... UCBA0000285\n| BOOK _\nTa) FULL POSTAL ADDRESS WITH E- AT. GUNDRUPADA, PO-HIRAKUD, DIST- SAMBALPUR, ODISHA-.\n\n| 12 I BANK ACCOUNT DETAILS “FOR SAVING BANK ACCOUNT NO — 02850110044179\n!\n\nMAIL ID (IF ANY)\n\n \n\nPIN ...768016\n| E-MAIL ID :-\n\n- INCASE THE AMOUNT IS USED FOR ANY PURPOSE OTHER THAN STATED IN COLUMN (9) ABOVE, | AM\nLIABLE TO RETURN THE ENTIRE AMOUNT WITH PENAL INTEREST.\nTHE MEMBER HEREBY DECLARES THAT HE HAD NOT BEEN EMPLOYED FOR 2 MONTH (YES/NO)\n\n(APPLICABLE FOR PF SETTLEMENT ONLY)\nve SIG N41\n\nMEMBER SIGNATURE AND DATE\n\nCERTIFIED THAT THE APPLICATION HAS BEEN SIGNED BY THE MEMBER IN MY PRESENCE AFTER HE/SHE HAD\nREAD THE CONTENT / THE CONTENT HAD BEEN EXPLAINED TO HIM / HER BY ME AND THAT THE\nINFORMATION GIVEN IN THE APPLICATION FORM |S CORRECT\n\nDATE:- : yA\nye\"\nEMPLOYER'S SIGNATURE\n\nDESIGNATION & SEAL OF EMPLOYER\n(OPTIANAL FOR FINAL PF SETTLEMENT)\n\nENCLOSURES: WV SELF ATTESTED AADHAR CARD & PANCARD\n2 cory OF CANCELLED CHEQUE / SELF ATTESTED COPY OF 15° PAGE OF PASS BOOK.\n\f"
- text: " \n\nHINDALCO INDUSTRIES LIMITED\nHIRAKUD\n\nPAYMENT ORDER\n\nPayto Simanchal Khatai\nCash Vr.No.\n\n \n\nEmp.No/S.Code No. _ ~\nby Cash/Cheque/D.D./Transfer the sum of Rs.2,00,000.00 apvrno,lOlY% 3s\nRupees Two Lakh only\n\n \n\nDetails of Payment Amount (Rs)\n\n \n\nns . 2,00,000\n\n \n\n \n\n \n\n \n\n \n\n \n\n2,00,000.\nPrepared by Recommeded by Endorsed by Authorised By Approved by\n\n9 ’\nner (wy\nDate Dept. Head Plant Head -F&A Head - Sambalpur Cluster\nPayment made on Charge\noem ra\n\n(b) By Cheque ner 2] 2G ~ 2> 7 + DA SHO-KLB (321)\n\nState Bank of india, Burla\nState Bank of India, Hirakud\nPunjab National Bank, Sambalpur [PNB-1]\n\n \n\n \n\n \n\n \n\n \n\nUuCcO Hirakud\n\n \n\nUCO’Bank, Sambalpur\n{DBI , Sambalpur (IDBI -1)\nIDB! , Sambalpur (IDBI -2)\n\nReceived Payment Charge Account Checked by\nSignature\n\n \n\n \n\n \n\n \n\n \n\n \n\f"
pipeline_tag: text-classification
inference: true
base_model: BAAI/bge-small-en-v1.5
model-index:
- name: SetFit with BAAI/bge-small-en-v1.5
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 1
name: Accuracy
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 1.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Gopal2002/CASH_AND_BANK_INVOICE")
# Run inference
preds = model("
")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 201.2534 | 4241 |
Label | Training Sample Count |
---|---|
0 | 113 |
1 | 33 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0023 | 1 | 0.3054 | - |
0.1142 | 50 | 0.1162 | - |
0.2283 | 100 | 0.0043 | - |
0.3425 | 150 | 0.0015 | - |
0.4566 | 200 | 0.0014 | - |
0.5708 | 250 | 0.0008 | - |
0.6849 | 300 | 0.0013 | - |
0.7991 | 350 | 0.001 | - |
0.9132 | 400 | 0.0004 | - |
1.0274 | 450 | 0.0008 | - |
1.1416 | 500 | 0.0008 | - |
1.2557 | 550 | 0.0011 | - |
1.3699 | 600 | 0.0008 | - |
1.4840 | 650 | 0.0007 | - |
1.5982 | 700 | 0.0005 | - |
1.7123 | 750 | 0.0005 | - |
1.8265 | 800 | 0.0007 | - |
1.9406 | 850 | 0.0005 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}