Edit model card

Model description

SYNTERACT (SYNThetic data-driven protein-protein intERACtion Transformer) is a fine-tuned version of ProtBERT that attends two amino acid sequences separated by [SEP] to determine if they plausibly interact in biological context.

We utilized the multivalidated physical interaction dataset from BIORGID, Negatome, and synthetic negative samples to train our model. Check out our preprint for more details.

SYNTERACT achieved unprecedented performance over vast phylogeny with 92-96% accuracy on real unseen examples, and is already being used to accelerate drug target screening and peptide therapeutic design.

How to use

# Imports
import re
import torch
import torch.nn.functional as F
from transformers import BertForSequenceClassification, BertTokenizer

model = BertForSequenceClassification.from_pretrained('GleghornLab/SYNTERACT') # load model
tokenizer = BertTokenizer.from_pretrained('GleghornLab/SYNTERACT') # load tokenizer
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') # gather device
model.to(device) # move to device
model.eval() # put in eval mode

sequence_a = 'MEKSCSIGNGREQYGWGHGEQCGTQFLECVYRNASMYSVLGDLITYVVFLGATCYAILFGFRLLLSCVRIVLKVVIALFVIRLLLALGSVDITSVSYSG' # Uniprot A1Z8T3
sequence_b = 'MRLTLLALIGVLCLACAYALDDSENNDQVVGLLDVADQGANHANDGAREARQLGGWGGGWGGRGGWGGRGGWGGRGGWGGRGGWGGGWGGRGGWGGRGGGWYGR' # Uniprot A1Z8H0
sequence_a = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_a))) # need spaces inbetween amino acids
sequence_b = ' '.join(list(re.sub(r'[UZOB]', 'X', sequence_b))) # replace rare amino acids with X
example = sequence_a + ' [SEP] ' + sequence_b # add SEP token

example = tokenizer(example, return_tensors='pt', padding=False).to(device) # tokenize example
with torch.no_grad():
    logits = model(**example).logits.cpu().detach() # get logits from model

probability = F.softmax(logits, dim=-1) # use softmax to get "confidence" in the prediction
prediction = probability.argmax(dim=-1) # 0 for no interaction, 1 for interaction

Intended use and limitations

We define a protein-protein interaction as physical contact that mediates chemical or conformational change, especially with non-generic function. However, due to SYNTERACT's propensity to predict false positives, we believe that it identifies plausible conformational changes caused by interactions without relevance to function.

Our lab

The Gleghorn lab is an interdisciplinary research group at the University of Delaware that focuses on solving translational problems with our expertise in engineering, biology, and chemistry. We develop inexpensive and reliable tools to study organ development, maternal-fetal health, and drug delivery. Recently we have begun exploration into protein language models and strive to make protein design and annotation accessible.

Please cite

@article {Hallee_ppi_2023, author = {Logan Hallee and Jason P. Gleghorn}, title = {Protein-Protein Interaction Prediction is Achievable with Large Language Models}, year = {2023}, doi = {10.1101/2023.06.07.544109}, publisher = {Cold Spring Harbor Laboratory}, journal = {bioRxiv} }

Downloads last month
99
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including GleghornLab/SYNTERACT