Edit model card

SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Accuracy
all 0.7861

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ghofranem/setfit-paraphrase-multilingual-MiniLM-L12-v2-ed-fr")
# Run inference
preds = model("Lire \"l'anorexie une addiction au plaisir de maigrir\" sciences et avenir")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 68.8313 694

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 5
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0010 1 0.3025 -
0.0498 50 0.3227 -
0.0996 100 0.1451 -
0.1494 150 0.0662 -
0.1992 200 0.1114 -
0.2490 250 0.0723 -
0.2988 300 0.0375 -
0.3486 350 0.0252 -
0.3984 400 0.0497 -
0.4482 450 0.087 -
0.4980 500 0.0584 -
0.5478 550 0.0758 -
0.5976 600 0.0624 -
0.6474 650 0.0572 -
0.6972 700 0.0726 -
0.7470 750 0.0012 -
0.7968 800 0.0052 -
0.8466 850 0.0309 -
0.8964 900 0.0713 -
0.9462 950 0.0043 -
0.9960 1000 0.0049 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 2.5.1
  • Transformers: 4.38.2
  • PyTorch: 2.2.1+cu121
  • Datasets: 2.18.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
2
Safetensors
Model size
118M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for Ghofranem/setfit-paraphrase-multilingual-MiniLM-L12-v2-ed-fr

Evaluation results