SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a OneVsRestClassifier instance
- Maximum Sequence Length: 128 tokens
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.7861 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Ghofranem/setfit-paraphrase-multilingual-MiniLM-L12-v2-ed-fr")
# Run inference
preds = model("Lire \"l'anorexie une addiction au plaisir de maigrir\" sciences et avenir")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 68.8313 | 694 |
Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0010 | 1 | 0.3025 | - |
0.0498 | 50 | 0.3227 | - |
0.0996 | 100 | 0.1451 | - |
0.1494 | 150 | 0.0662 | - |
0.1992 | 200 | 0.1114 | - |
0.2490 | 250 | 0.0723 | - |
0.2988 | 300 | 0.0375 | - |
0.3486 | 350 | 0.0252 | - |
0.3984 | 400 | 0.0497 | - |
0.4482 | 450 | 0.087 | - |
0.4980 | 500 | 0.0584 | - |
0.5478 | 550 | 0.0758 | - |
0.5976 | 600 | 0.0624 | - |
0.6474 | 650 | 0.0572 | - |
0.6972 | 700 | 0.0726 | - |
0.7470 | 750 | 0.0012 | - |
0.7968 | 800 | 0.0052 | - |
0.8466 | 850 | 0.0309 | - |
0.8964 | 900 | 0.0713 | - |
0.9462 | 950 | 0.0043 | - |
0.9960 | 1000 | 0.0049 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.5.1
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 2
Inference API (serverless) has been turned off for this model.