|
--- |
|
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct |
|
datasets: |
|
- GaetanMichelet/chat-60_ft_task-1 |
|
- GaetanMichelet/chat-120_ft_task-1 |
|
library_name: peft |
|
license: llama3.1 |
|
tags: |
|
- alignment-handbook |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Llama-31-8B_task-1_120-samples_config-4 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Llama-31-8B_task-1_120-samples_config-4 |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2635 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 150 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-------:|:----:|:---------------:| |
|
| 2.121 | 0.9091 | 5 | 2.1020 | |
|
| 2.0709 | 2.0 | 11 | 2.0931 | |
|
| 2.0454 | 2.9091 | 16 | 2.0755 | |
|
| 2.0502 | 4.0 | 22 | 2.0472 | |
|
| 2.0511 | 4.9091 | 27 | 2.0100 | |
|
| 1.9554 | 6.0 | 33 | 1.9472 | |
|
| 1.8921 | 6.9091 | 38 | 1.8795 | |
|
| 1.8104 | 8.0 | 44 | 1.7813 | |
|
| 1.7636 | 8.9091 | 49 | 1.6937 | |
|
| 1.6011 | 10.0 | 55 | 1.6142 | |
|
| 1.5128 | 10.9091 | 60 | 1.5751 | |
|
| 1.4277 | 12.0 | 66 | 1.5353 | |
|
| 1.4998 | 12.9091 | 71 | 1.5001 | |
|
| 1.4154 | 14.0 | 77 | 1.4583 | |
|
| 1.4201 | 14.9091 | 82 | 1.4252 | |
|
| 1.3364 | 16.0 | 88 | 1.3921 | |
|
| 1.2762 | 16.9091 | 93 | 1.3691 | |
|
| 1.2851 | 18.0 | 99 | 1.3437 | |
|
| 1.2239 | 18.9091 | 104 | 1.3261 | |
|
| 1.221 | 20.0 | 110 | 1.3084 | |
|
| 1.2011 | 20.9091 | 115 | 1.2951 | |
|
| 1.1433 | 22.0 | 121 | 1.2824 | |
|
| 1.1579 | 22.9091 | 126 | 1.2746 | |
|
| 1.0871 | 24.0 | 132 | 1.2680 | |
|
| 1.0745 | 24.9091 | 137 | 1.2635 | |
|
| 1.0006 | 26.0 | 143 | 1.2674 | |
|
| 0.9628 | 26.9091 | 148 | 1.2689 | |
|
| 0.9237 | 28.0 | 154 | 1.2717 | |
|
| 0.8824 | 28.9091 | 159 | 1.2880 | |
|
| 0.8706 | 30.0 | 165 | 1.2961 | |
|
| 0.8328 | 30.9091 | 170 | 1.3266 | |
|
| 0.7667 | 32.0 | 176 | 1.3447 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.44.0 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |