GaetanMichelet's picture
End of training
0aafa37 verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-1
  - GaetanMichelet/chat-120_ft_task-1
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-1_120-samples_config-3_full
    results: []

Llama-31-8B_task-1_120-samples_config-3_full

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1 and the GaetanMichelet/chat-120_ft_task-1 datasets. It achieves the following results on the evaluation set:

  • Loss: 0.9015

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
2.4681 1.0 11 2.4539
2.3894 2.0 22 2.4260
2.4746 3.0 33 2.3827
2.4177 4.0 44 2.3138
2.1959 5.0 55 2.2269
2.16 6.0 66 2.1177
2.0388 7.0 77 1.9844
1.8932 8.0 88 1.8442
1.7199 9.0 99 1.6830
1.4973 10.0 110 1.4929
1.2726 11.0 121 1.2980
1.204 12.0 132 1.1554
1.0597 13.0 143 1.0772
1.0642 14.0 154 1.0425
1.0466 15.0 165 1.0201
1.0044 16.0 176 1.0010
0.9967 17.0 187 0.9866
0.9863 18.0 198 0.9736
0.9065 19.0 209 0.9644
0.8669 20.0 220 0.9539
0.9253 21.0 231 0.9454
0.872 22.0 242 0.9398
0.8824 23.0 253 0.9328
0.8582 24.0 264 0.9283
0.8763 25.0 275 0.9221
0.8199 26.0 286 0.9177
0.7986 27.0 297 0.9146
0.7754 28.0 308 0.9142
0.7893 29.0 319 0.9086
0.7312 30.0 330 0.9087
0.7431 31.0 341 0.9050
0.7103 32.0 352 0.9037
0.6967 33.0 363 0.9092
0.6502 34.0 374 0.9071
0.6659 35.0 385 0.9019
0.7003 36.0 396 0.9015
0.629 37.0 407 0.9018
0.6299 38.0 418 0.9081
0.6259 39.0 429 0.9162
0.6262 40.0 440 0.9212
0.5707 41.0 451 0.9212
0.5749 42.0 462 0.9274
0.533 43.0 473 0.9369

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1