dollygem-2b-LoRA / README.md
eduardo-alvarez's picture
Update README.md
27eda5c verified
metadata
license: gemma
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
  - ipex
  - GPU Max 1100
  - intel
datasets:
  - generator
  - databricks/databricks-dolly-15k
base_model: google/gemma-2b
model-index:
  - name: gemma-2b-dolly-qa
    results: []

gemma-2b-dolly-qa

This model is a fine-tuned version of google/gemma-2b on the generator dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

databricks/databricks-dolly-15k

Training Hardware

This model was trained using Intel(R) Data Center GPU Max 1100

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.05
  • training_steps: 1480

Training results

Training Loss Epoch Step Validation Loss
2.9198 1.64 100 2.5675
2.437 3.28 200 2.2818
2.2514 4.92 300 2.1677
2.1587 6.56 400 2.1038
2.116 8.2 500 2.0741
2.0794 9.84 600 2.0576
2.0663 11.48 700 2.0467
2.0494 13.11 800 2.0394
2.0449 14.75 900 2.0336
2.0336 16.39 1000 2.0293
2.0281 18.03 1100 2.0262
2.0172 19.67 1200 2.0240
2.0227 21.31 1300 2.0227
2.0128 22.95 1400 2.0215

Framework versions

  • PEFT 0.10.0
  • Transformers 4.39.3
  • Pytorch 2.0.1a0+cxx11.abi
  • Datasets 2.18.0
  • Tokenizers 0.15.2