Magic_v2_8B / README.md
jeiku's picture
Upload folder using huggingface_hub
7a08283 verified
---
library_name: transformers
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
tags:
- generated_from_trainer
model-index:
- name: outputs/out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: sharegpt
conversation: chatml
- path: NewEden/Kalo-Opus-Instruct-22k-Refusal-Murdered
type: sharegpt
conversation: chatml
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: NewEden/Gryphe-Sonnet-3.5-35k-Subset
type: sharegpt
conversation: chatml
- path: Nitral-AI/Reasoning-1shot_ShareGPT
type: sharegpt
conversation: chatml
- path: Nitral-AI/GU_Instruct-ShareGPT
type: sharegpt
conversation: chatml
- path: Nitral-AI/Medical_Instruct-ShareGPT
type: sharegpt
conversation: chatml
- path: AquaV/Resistance-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/US-Army-Survival-Sharegpt
type: sharegpt
conversation: chatml
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned
type: sharegpt
conversation: chatml
chat_template: chatml
val_set_size: 0.002
output_dir: ./outputs/out
adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: mini8B
wandb_entity:
wandb_watch:
wandb_name: mini8B
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_ratio: 0.1
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
fsdp:
fsdp_config:
special_tokens:
pad_token: <pad>
```
</details><br>
# outputs/out
This model is a fine-tuned version of [Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML](https://huggingface.co/Dans-DiscountModels/Mistral-NeMo-Minitron-8B-Base-ChatML) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5341
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 91
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.2548 | 0.0022 | 1 | 2.0884 |
| 0.7712 | 0.2503 | 114 | 1.6165 |
| 0.7566 | 0.5005 | 228 | 1.5734 |
| 0.7241 | 0.7508 | 342 | 1.5579 |
| 0.6994 | 1.0011 | 456 | 1.5401 |
| 0.6186 | 1.2499 | 570 | 1.5433 |
| 0.6102 | 1.5003 | 684 | 1.5366 |
| 0.5926 | 1.7507 | 798 | 1.5341 |
### Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1