See axolotl config
axolotl version: 0.4.1
base_model: Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: practical-dreamer/RPGPT_PublicDomain-alpaca
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.1
output_dir: ./outputs/qlora-out
adapter: qlora
lora_model_dir:
sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
outputs/qlora-out
This model is a fine-tuned version of Fischerboot/LLama3-Lexi-Aura-3Some-SLERP-SLERP on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.0083
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.3184 | 0.0065 | 1 | 1.3193 |
1.089 | 0.2545 | 39 | 1.1131 |
1.0475 | 0.5090 | 78 | 1.0719 |
1.0362 | 0.7635 | 117 | 1.0525 |
1.0619 | 1.0049 | 156 | 1.0389 |
1.0165 | 1.2594 | 195 | 1.0322 |
0.9394 | 1.5139 | 234 | 1.0246 |
0.999 | 1.7684 | 273 | 1.0182 |
0.9615 | 2.0082 | 312 | 1.0137 |
0.9543 | 2.2626 | 351 | 1.0136 |
0.9429 | 2.5171 | 390 | 1.0109 |
0.9474 | 2.7716 | 429 | 1.0076 |
0.8902 | 3.0098 | 468 | 1.0061 |
0.9144 | 3.2643 | 507 | 1.0089 |
0.9026 | 3.5188 | 546 | 1.0082 |
0.9163 | 3.7732 | 585 | 1.0083 |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.1.2+cu118
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4