Edit model card

wav2vec2-large-xlsr-53-english-ser-linear

This model is a fine-tuned version of jonatasgrosman/wav2vec2-large-xlsr-53-english on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4643
  • Accuracy: 0.8587

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.8767 0.01 10 1.8078 0.1684
1.7967 0.02 20 1.7544 0.2235
1.8173 0.02 30 1.7072 0.3032
1.7604 0.03 40 1.7162 0.2227
1.7271 0.04 50 1.6655 0.3032
1.764 0.05 60 1.5927 0.3599
1.55 0.06 70 1.5354 0.3657
1.5448 0.07 80 1.4057 0.4560
1.5118 0.07 90 1.3551 0.4733
1.354 0.08 100 1.2319 0.5596
1.3675 0.09 110 1.1786 0.5735
1.4058 0.1 120 1.0949 0.6105
1.1595 0.11 130 1.0964 0.5908
1.0444 0.12 140 1.1262 0.6212
1.0483 0.12 150 1.0863 0.5982
1.0439 0.13 160 1.0488 0.6491
1.0129 0.14 170 0.9045 0.6549
1.0171 0.15 180 1.0276 0.6270
1.0867 0.16 190 1.0888 0.6023
1.0646 0.16 200 0.9730 0.6311
1.0403 0.17 210 0.9315 0.6582
0.869 0.18 220 0.9686 0.6574
0.9193 0.19 230 0.9076 0.6960
1.0266 0.2 240 1.0796 0.6565
0.8563 0.21 250 1.0173 0.6426
0.8382 0.21 260 0.9155 0.6820
0.9275 0.22 270 0.9397 0.6689
0.9402 0.23 280 0.8919 0.6861
0.8636 0.24 290 0.9795 0.6680
1.2393 0.25 300 0.9872 0.6680
0.9537 0.25 310 0.8181 0.7247
0.7361 0.26 320 0.8470 0.7025
0.8452 0.27 330 0.8045 0.7198
0.9613 0.28 340 0.7530 0.7313
0.9335 0.29 350 0.9019 0.6902
0.9414 0.3 360 0.8981 0.6795
0.7473 0.3 370 0.7532 0.7321
0.8774 0.31 380 0.8953 0.7165
0.6989 0.32 390 0.7381 0.7387
0.9826 0.33 400 0.7128 0.7403
0.783 0.34 410 0.8292 0.6952
0.9668 0.35 420 0.7826 0.7239
0.7935 0.35 430 0.7081 0.7510
0.8284 0.36 440 0.7304 0.7264
0.9404 0.37 450 0.6761 0.7650
0.7735 0.38 460 0.6827 0.7469
0.6811 0.39 470 0.7926 0.7132
0.683 0.39 480 0.6883 0.7428
0.6779 0.4 490 0.6608 0.7486
0.6329 0.41 500 0.6578 0.7617
0.5824 0.42 510 0.7696 0.7420
0.6974 0.43 520 0.6755 0.7625
0.7716 0.44 530 0.6453 0.7716
0.7463 0.44 540 0.6644 0.7642
0.7993 0.45 550 0.6059 0.7864
0.606 0.46 560 0.6857 0.7461
0.8619 0.47 570 0.6570 0.7560
0.699 0.48 580 0.7400 0.7313
0.6619 0.49 590 0.7014 0.7494
0.7696 0.49 600 0.6621 0.7584
0.6544 0.5 610 0.6826 0.7650
0.5403 0.51 620 0.7464 0.7551
0.746 0.52 630 0.7323 0.7551
0.8129 0.53 640 0.7221 0.7634
0.7245 0.53 650 0.6306 0.7790
0.7062 0.54 660 0.6250 0.7896
0.741 0.55 670 0.6129 0.7938
0.7185 0.56 680 0.6332 0.7847
0.7706 0.57 690 0.5988 0.7954
0.8147 0.58 700 0.7032 0.7781
0.5144 0.58 710 0.6849 0.7634
0.9247 0.59 720 0.6088 0.7749
0.629 0.6 730 0.6393 0.7806
0.5908 0.61 740 0.5696 0.7913
0.4951 0.62 750 0.6370 0.7765
0.6358 0.62 760 0.6232 0.7979
0.6396 0.63 770 0.6707 0.7905
0.6947 0.64 780 0.6981 0.7683
0.6748 0.65 790 0.6761 0.7765
0.5607 0.66 800 0.6551 0.7921
0.6991 0.67 810 0.6134 0.7905
0.5793 0.67 820 0.5633 0.8118
0.4755 0.68 830 0.6031 0.7929
0.7645 0.69 840 0.5896 0.7962
0.742 0.7 850 0.5811 0.8036
0.5281 0.71 860 0.6449 0.7855
0.722 0.72 870 0.6593 0.7765
0.8174 0.72 880 0.5410 0.8003
0.5373 0.73 890 0.5802 0.7954
0.3868 0.74 900 0.6015 0.7954
0.5459 0.75 910 0.5485 0.7970
0.4629 0.76 920 0.6961 0.7584
0.6952 0.76 930 0.5608 0.8053
0.8452 0.77 940 0.5649 0.8044
0.6026 0.78 950 0.5330 0.8127
0.5131 0.79 960 0.5971 0.7888
0.6814 0.8 970 0.5594 0.8061
0.6001 0.81 980 0.5851 0.7954
0.5367 0.81 990 0.5716 0.8003
0.8356 0.82 1000 0.6519 0.7683
0.502 0.83 1010 0.6180 0.7749
0.5343 0.84 1020 0.5377 0.8053
0.5288 0.85 1030 0.5902 0.7962
0.5786 0.86 1040 0.6221 0.7905
0.6272 0.86 1050 0.6688 0.7831
0.5105 0.87 1060 0.6209 0.7880
0.5806 0.88 1070 0.6145 0.7929
0.5805 0.89 1080 0.6150 0.7847
0.4812 0.9 1090 0.5812 0.8061
0.5558 0.9 1100 0.6388 0.8044
0.7507 0.91 1110 0.5873 0.8044
0.7217 0.92 1120 0.5404 0.8085
0.8146 0.93 1130 0.5449 0.8003
0.6112 0.94 1140 0.5038 0.8151
0.7305 0.95 1150 0.4767 0.8316
0.3422 0.95 1160 0.5178 0.8127
0.4644 0.96 1170 0.5073 0.8200
0.4664 0.97 1180 0.4988 0.8184
0.6223 0.98 1190 0.5120 0.8283
0.6961 0.99 1200 0.5217 0.8118
0.6706 1.0 1210 0.5235 0.8094
0.3899 1.0 1220 0.5085 0.8184
0.418 1.01 1230 0.5171 0.8135
0.5011 1.02 1240 0.5056 0.8217
0.2969 1.03 1250 0.5209 0.8217
0.5093 1.04 1260 0.4921 0.8348
0.5167 1.04 1270 0.5081 0.8274
0.6382 1.05 1280 0.4851 0.8291
0.3493 1.06 1290 0.4946 0.8324
0.3471 1.07 1300 0.5122 0.8299
0.452 1.08 1310 0.5592 0.8291
0.4362 1.09 1320 0.5528 0.8266
0.4224 1.09 1330 0.5571 0.8192
0.333 1.1 1340 0.5714 0.8110
0.2944 1.11 1350 0.5156 0.8299
0.4004 1.12 1360 0.5208 0.8340
0.6824 1.13 1370 0.5426 0.8258
0.3746 1.13 1380 0.4902 0.8365
0.3679 1.14 1390 0.4868 0.8373
0.5009 1.15 1400 0.5192 0.8283
0.5577 1.16 1410 0.4937 0.8316
0.2566 1.17 1420 0.5043 0.8250
0.6625 1.18 1430 0.5416 0.8209
0.3251 1.18 1440 0.5146 0.8291
0.4306 1.19 1450 0.5313 0.8266
0.3159 1.2 1460 0.5308 0.8291
0.3598 1.21 1470 0.4869 0.8439
0.5498 1.22 1480 0.4670 0.8537
0.4947 1.23 1490 0.4928 0.8463
0.3948 1.23 1500 0.4816 0.8455
0.3137 1.24 1510 0.4755 0.8439
0.3525 1.25 1520 0.4972 0.8389
0.4821 1.26 1530 0.4954 0.8381
0.6099 1.27 1540 0.5096 0.8324
0.3172 1.27 1550 0.5029 0.8389
0.29 1.28 1560 0.4852 0.8455
0.288 1.29 1570 0.4916 0.8496
0.3771 1.3 1580 0.4734 0.8505
0.3106 1.31 1590 0.4746 0.8431
0.3494 1.32 1600 0.5069 0.8431
0.3183 1.32 1610 0.5155 0.8398
0.4353 1.33 1620 0.5242 0.8332
0.6207 1.34 1630 0.5161 0.8340
0.3241 1.35 1640 0.5037 0.8406
0.3646 1.36 1650 0.4890 0.8439
0.2341 1.37 1660 0.4884 0.8496
0.4874 1.37 1670 0.4688 0.8562
0.6701 1.38 1680 0.4589 0.8554
0.391 1.39 1690 0.4684 0.8537
0.3333 1.4 1700 0.4738 0.8513
0.2449 1.41 1710 0.4753 0.8488
0.361 1.41 1720 0.4946 0.8496
0.2229 1.42 1730 0.4971 0.8463
0.5915 1.43 1740 0.4904 0.8513
0.1812 1.44 1750 0.4782 0.8537
0.5887 1.45 1760 0.4702 0.8570
0.2823 1.46 1770 0.4665 0.8570
0.3397 1.46 1780 0.4673 0.8546
0.4727 1.47 1790 0.4638 0.8578
0.3303 1.48 1800 0.4636 0.8578
0.4544 1.49 1810 0.4646 0.8587
0.366 1.5 1820 0.4643 0.8587

Framework versions

  • Transformers 4.40.0.dev0
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.1.dev0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
316M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for FarhadMadadzade/wav2vec2-large-xlsr-53-english-ser-linear

Finetuned
(22)
this model