EzraWilliam's picture
Upload tokenizer
aeec3ce verified
metadata
base_model: facebook/wav2vec2-large-xlsr-53
datasets:
  - common_voice_13_0
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: XLS-R-demo-google-colab-Ezra_William_Prod_3
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_13_0
          type: common_voice_13_0
          config: id
          split: validation
          args: id
        metrics:
          - type: wer
            value: 0.697900059217419
            name: Wer

XLS-R-demo-google-colab-Ezra_William_Prod_3

This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the common_voice_13_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7896
  • Wer: 0.6979

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 12
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.4479 1.0 121 2.9741 1.0
2.9543 2.0 242 2.9297 1.0
2.9306 3.0 363 2.9112 1.0
2.9216 4.0 484 2.9071 1.0
2.8968 5.0 605 2.8713 1.0
2.8822 6.0 726 2.8446 1.0
2.8421 7.0 847 2.5157 1.0
2.5763 8.0 968 1.5780 0.9964
1.9449 9.0 1089 0.9864 0.8132
1.0398 10.0 1210 0.8565 0.7348
0.9162 11.0 1331 0.7941 0.7043
0.8909 12.0 1452 0.7896 0.6979

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1