|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
model-index: |
|
- name: mdeberta-v3-base-finetuned-pos |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mdeberta-v3-base-finetuned-pos |
|
|
|
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0887 |
|
- Acc: 0.9814 |
|
- F1: 0.8861 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Acc | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| No log | 1.0 | 439 | 0.0965 | 0.9749 | 0.8471 | |
|
| 0.3317 | 2.0 | 878 | 0.0815 | 0.9783 | 0.8702 | |
|
| 0.0775 | 3.0 | 1317 | 0.0780 | 0.9812 | 0.8825 | |
|
| 0.0568 | 4.0 | 1756 | 0.0769 | 0.9809 | 0.8827 | |
|
| 0.0444 | 5.0 | 2195 | 0.0799 | 0.9811 | 0.8885 | |
|
| 0.0339 | 6.0 | 2634 | 0.0834 | 0.9813 | 0.8821 | |
|
| 0.0278 | 7.0 | 3073 | 0.0845 | 0.9817 | 0.8843 | |
|
| 0.0222 | 8.0 | 3512 | 0.0866 | 0.9814 | 0.8863 | |
|
| 0.0222 | 9.0 | 3951 | 0.0885 | 0.9814 | 0.8862 | |
|
| 0.0188 | 10.0 | 4390 | 0.0887 | 0.9814 | 0.8861 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.0 |
|
- Pytorch 1.11.0+cu113 |
|
- Datasets 2.3.2 |
|
- Tokenizers 0.12.1 |
|
|