metadata
license: apache-2.0
base_model: bert-base-cased
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
config: conll2003
split: validation
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9493392070484582
- name: Recall
type: recall
value: 0.9577777777777777
- name: F1
type: f1
value: 0.9535398230088495
- name: Accuracy
type: accuracy
value: 0.9834710743801653
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0572
- Precision: 0.9493
- Recall: 0.9578
- F1: 0.9535
- Accuracy: 0.9835
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 1.0 | 125 | 0.0625 | 0.9304 | 0.9511 | 0.9407 | 0.9816 |
No log | 2.0 | 250 | 0.0662 | 0.9409 | 0.9556 | 0.9482 | 0.9832 |
No log | 3.0 | 375 | 0.0572 | 0.9493 | 0.9578 | 0.9535 | 0.9835 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1