|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: vit-base-patch16-224-in21k_covid_19_ct_scans |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: default |
|
split: train |
|
args: default |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.94 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9379310344827586 |
|
- name: Recall |
|
type: recall |
|
value: 0.8947368421052632 |
|
- name: Precision |
|
type: precision |
|
value: 0.9855072463768116 |
|
language: |
|
- en |
|
pipeline_tag: image-classification |
|
--- |
|
|
|
# vit-base-patch16-224-in21k_covid_19_ct_scans |
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1727 |
|
- Accuracy: 0.94 |
|
- F1: 0.9379 |
|
- Recall: 0.8947 |
|
- Precision: 0.9855 |
|
|
|
## Model description |
|
|
|
This is a binary classification model to distinguish between CT scans that detect COVID-19 and those who do not. |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Classification/Binary%20Classification/COVID19%20Lung%20CT%20Scans/COVID19_Lung_CT_Scans_ViT.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://www.kaggle.com/datasets/luisblanche/covidct |
|
|
|
_Sample Images From Dataset:_ |
|
|
|
![Sample Images](https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/raw/main/Computer%20Vision/Image%20Classification/Binary%20Classification/COVID19%20Lung%20CT%20Scans/Images/Sample%20Images.png) |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.6742 | 1.0 | 38 | 0.4309 | 0.9 | 0.8993 | 0.8816 | 0.9178 | |
|
| 0.6742 | 2.0 | 76 | 0.3739 | 0.8467 | 0.8686 | 1.0 | 0.7677 | |
|
| 0.6742 | 3.0 | 114 | 0.1727 | 0.94 | 0.9379 | 0.8947 | 0.9855 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.2 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.5.2 |
|
- Tokenizers 0.12.1 |