metadata
language:
- en
license: other
tags:
- computer-vision
- generated_from_trainer
model-index:
- name: mit-b0-CMP_semantic_seg_with_mps_v2
results: []
datasets:
- Xpitfire/cmp_facade
metrics:
- mean_iou
pipeline_tag: image-segmentation
mit-b0-CMP_semantic_seg_with_mps_v2
This model is a fine-tuned version of nvidia/mit-b0.
It achieves the following results on the evaluation set:
- Loss: 1.0863
- Mean Iou: 0.4097
- Mean Accuracy: 0.5538
- Overall Accuracy: 0.6951
- Per Category Iou:
- Segment 0: 0.5921698801573617
- Segment 1: 0.5795623712718901
- Segment 2: 0.5784812820145221
- Segment 3: 0.2917052691882505
- Segment 4: 0.3792639848157326
- Segment 5: 0.37973303153855376
- Segment 6: 0.4481097636024487
- Segment 7: 0.4354492668218124
- Segment 8: 0.26472453634508664
- Segment 9: 0.4173722023142026
- Segment 10: 0.18166072949276144
- Segment 11: 0.36809541729585366
- Per Category Accuracy:
- Segment 0: 0.6884460857323806
- Segment 1: 0.7851625477616788
- Segment 2: 0.7322992353412343
- Segment 3: 0.45229387721112274
- Segment 4: 0.5829333862769369
- Segment 5: 0.5516333441001092
- Segment 6: 0.5904157921999404
- Segment 7: 0.5288772981353482
- Segment 8: 0.4518224891972707
- Segment 9: 0.571864661897264
- Segment 10: 0.23178753217655862
- Segment 11: 0.47833833709905393
Model description
For more information on how it was created, check out the following link: https://github.com/DunnBC22/Vision_Audio_and_Multimodal_Projects/blob/main/Computer%20Vision/Image%20Segmentation/Trained%2C%20But%20to%20My%20Standard/Center%20for%20Machine%20Perception/Version%202/Center%20for%20Machine%20Perception%20-%20semantic_segmentation_v2.ipynb
Intended uses & limitations
This model is intended to demonstrate my ability to solve a complex problem using technology. You are welcome to use it, but remember that it is at your own risk/peril.
Training and evaluation data
Dataset Source: https://huggingface.co/datasets/Xpitfire/cmp_facade
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Overall Dataset Metrics
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy |
---|---|---|---|---|---|---|
1.6807 | 1.0 | 189 | 1.3310 | 0.2226 | 0.3388 | 0.5893 |
1.1837 | 2.0 | 378 | 1.1731 | 0.2602 | 0.3876 | 0.6122 |
1.0241 | 3.0 | 567 | 1.0485 | 0.2915 | 0.3954 | 0.6393 |
0.9353 | 4.0 | 756 | 0.9943 | 0.3054 | 0.4021 | 0.6570 |
0.8717 | 5.0 | 945 | 1.0010 | 0.3299 | 0.4440 | 0.6530 |
0.8238 | 6.0 | 1134 | 0.9537 | 0.3546 | 0.4771 | 0.6701 |
0.7415 | 8.0 | 1512 | 0.9738 | 0.3554 | 0.4634 | 0.6733 |
0.7708 | 7.0 | 1323 | 0.9789 | 0.3550 | 0.4837 | 0.6683 |
0.7018 | 9.0 | 1701 | 0.9449 | 0.3667 | 0.4802 | 0.6826 |
0.682 | 10.0 | 1890 | 0.9422 | 0.3762 | 0.5047 | 0.6805 |
0.6503 | 11.0 | 2079 | 0.9889 | 0.3785 | 0.5082 | 0.6729 |
0.633 | 12.0 | 2268 | 0.9594 | 0.3901 | 0.5224 | 0.6797 |
0.6035 | 13.0 | 2457 | 0.9612 | 0.3939 | 0.5288 | 0.6834 |
0.5874 | 14.0 | 2646 | 0.9657 | 0.3939 | 0.5383 | 0.6844 |
0.5684 | 15.0 | 2835 | 0.9762 | 0.3950 | 0.5446 | 0.6855 |
0.5485 | 16.0 | 3024 | 1.0645 | 0.3794 | 0.5095 | 0.6704 |
0.5402 | 17.0 | 3213 | 0.9747 | 0.4044 | 0.5600 | 0.6839 |
0.5275 | 18.0 | 3402 | 1.0054 | 0.3944 | 0.5411 | 0.6790 |
0.5032 | 19.0 | 3591 | 1.0014 | 0.3973 | 0.5256 | 0.6875 |
0.4985 | 20.0 | 3780 | 0.9893 | 0.3990 | 0.5468 | 0.6883 |
0.4925 | 21.0 | 3969 | 1.0416 | 0.3955 | 0.5339 | 0.6806 |
0.4772 | 22.0 | 4158 | 1.0142 | 0.3969 | 0.5476 | 0.6838 |
0.4707 | 23.0 | 4347 | 0.9896 | 0.4077 | 0.5458 | 0.6966 |
0.4601 | 24.0 | 4536 | 1.0040 | 0.4104 | 0.5551 | 0.6948 |
0.4544 | 25.0 | 4725 | 1.0093 | 0.4093 | 0.5652 | 0.6899 |
0.4421 | 26.0 | 4914 | 1.0434 | 0.4064 | 0.5448 | 0.6938 |
0.4293 | 27.0 | 5103 | 1.0391 | 0.4076 | 0.5571 | 0.6908 |
0.4312 | 28.0 | 5292 | 1.0037 | 0.4100 | 0.5534 | 0.6958 |
0.4309 | 29.0 | 5481 | 1.0288 | 0.4101 | 0.5493 | 0.6968 |
0.4146 | 30.0 | 5670 | 1.0602 | 0.4062 | 0.5445 | 0.6928 |
0.4106 | 31.0 | 5859 | 1.0573 | 0.4113 | 0.5520 | 0.6937 |
0.4102 | 32.0 | 6048 | 1.0616 | 0.4043 | 0.5444 | 0.6904 |
0.394 | 33.0 | 6237 | 1.0244 | 0.4104 | 0.5587 | 0.6957 |
0.3865 | 34.0 | 6426 | 1.0618 | 0.4086 | 0.5468 | 0.6922 |
0.3816 | 35.0 | 6615 | 1.0515 | 0.4109 | 0.5587 | 0.6937 |
0.3803 | 36.0 | 6804 | 1.0709 | 0.4118 | 0.5507 | 0.6982 |
0.3841 | 37.0 | 6993 | 1.0646 | 0.4102 | 0.5423 | 0.7000 |
0.383 | 38.0 | 7182 | 1.0769 | 0.4076 | 0.5463 | 0.6981 |
0.3831 | 39.0 | 7371 | 1.0821 | 0.4081 | 0.5438 | 0.6949 |
0.3701 | 40.0 | 7560 | 1.0971 | 0.4094 | 0.5503 | 0.6939 |
0.3728 | 41.0 | 7749 | 1.0850 | 0.4073 | 0.5426 | 0.6955 |
0.3693 | 42.0 | 7938 | 1.0969 | 0.4065 | 0.5503 | 0.6922 |
0.3627 | 43.0 | 8127 | 1.0932 | 0.4087 | 0.5497 | 0.6948 |
0.3707 | 44.0 | 8316 | 1.1095 | 0.4071 | 0.5449 | 0.6950 |
0.3715 | 45.0 | 8505 | 1.0884 | 0.4110 | 0.5481 | 0.6962 |
0.3637 | 46.0 | 8694 | 1.0893 | 0.4116 | 0.5565 | 0.6948 |
0.3581 | 47.0 | 8883 | 1.1164 | 0.4080 | 0.5443 | 0.6938 |
0.3595 | 48.0 | 9072 | 1.1264 | 0.4056 | 0.5374 | 0.6942 |
0.3604 | 49.0 | 9261 | 1.0948 | 0.4104 | 0.5508 | 0.6953 |
0.3541 | 50.0 | 9450 | 1.0863 | 0.4097 | 0.5538 | 0.6951 |
Per Category IoU For Each Segment
Epoch | Segment 0 | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segment 8 | Segment 9 | Segment 10 | Segment 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 0.4635 | 0.4905 | 0.4698 | 0.0 | 0.2307 | 0.1515 | 0.2789 | 0.0002 | 0.0250 | 0.3527 | 0.0 | 0.2087 |
2.0 | 0.4240 | 0.5249 | 0.5152 | 0.0057 | 0.2636 | 0.2756 | 0.3312 | 0.0575 | 0.0539 | 0.3860 | 0.0 | 0.2854 |
3.0 | 0.5442 | 0.5037 | 0.5329 | 0.0412 | 0.3062 | 0.2714 | 0.3820 | 0.1430 | 0.0796 | 0.4007 | 0.0002 | 0.2929 |
4.0 | 0.5776 | 0.5289 | 0.5391 | 0.1171 | 0.3137 | 0.2600 | 0.3664 | 0.1527 | 0.1074 | 0.3935 | 0.0002 | 0.3078 |
5.0 | 0.4790 | 0.5506 | 0.5472 | 0.1547 | 0.3372 | 0.3297 | 0.4151 | 0.2339 | 0.1709 | 0.4081 | 0.0008 | 0.3314 |
6.0 | 0.5572 | 0.5525 | 0.5611 | 0.2076 | 0.3434 | 0.3163 | 0.4103 | 0.3279 | 0.2107 | 0.4191 | 0.0067 | 0.3418 |
7.0 | 0.5310 | 0.5634 | 0.5594 | 0.2299 | 0.3424 | 0.3375 | 0.4050 | 0.2883 | 0.2197 | 0.4142 | 0.0316 | 0.3373 |
8.0 | 0.5366 | 0.5659 | 0.5550 | 0.2331 | 0.3497 | 0.3334 | 0.4301 | 0.3401 | 0.1989 | 0.4181 | 0.0358 | 0.2680 |
9.0 | 0.5798 | 0.5657 | 0.5624 | 0.2368 | 0.3648 | 0.3271 | 0.4250 | 0.3207 | 0.2096 | 0.4236 | 0.0504 | 0.3346 |
10.0 | 0.5802 | 0.5622 | 0.5585 | 0.2340 | 0.3793 | 0.3407 | 0.4277 | 0.3801 | 0.2301 | 0.4216 | 0.0640 | 0.3367 |
11.0 | 0.5193 | 0.5649 | 0.5605 | 0.2698 | 0.3772 | 0.3526 | 0.4342 | 0.3433 | 0.2415 | 0.4336 | 0.0889 | 0.3562 |
12.0 | 0.5539 | 0.5641 | 0.5679 | 0.2658 | 0.3757 | 0.3510 | 0.4257 | 0.3993 | 0.2354 | 0.4338 | 0.1800 | 0.3287 |
13.0 | 0.5663 | 0.5666 | 0.5679 | 0.2631 | 0.3726 | 0.3609 | 0.4351 | 0.3759 | 0.2511 | 0.4256 | 0.1737 | 0.3681 |
14.0 | 0.5807 | 0.5670 | 0.5679 | 0.2670 | 0.3594 | 0.3605 | 0.4393 | 0.3863 | 0.2406 | 0.4228 | 0.1705 | 0.3652 |
15.0 | 0.5800 | 0.5711 | 0.5671 | 0.2825 | 0.3664 | 0.3587 | 0.4408 | 0.4021 | 0.2540 | 0.4246 | 0.1376 | 0.3548 |
16.0 | 0.4855 | 0.5683 | 0.5685 | 0.2612 | 0.3832 | 0.3628 | 0.4378 | 0.4056 | 0.2525 | 0.4206 | 0.1242 | 0.2825 |
17.0 | 0.5697 | 0.5674 | 0.5687 | 0.2971 | 0.3767 | 0.3741 | 0.4486 | 0.4126 | 0.2489 | 0.4260 | 0.1874 | 0.3757 |
18.0 | 0.5341 | 0.5728 | 0.5616 | 0.2827 | 0.3823 | 0.3782 | 0.4298 | 0.4070 | 0.2578 | 0.4195 | 0.1448 | 0.3632 |
19.0 | 0.5696 | 0.5739 | 0.5699 | 0.2918 | 0.3717 | 0.3635 | 0.4444 | 0.4122 | 0.2531 | 0.4142 | 0.1659 | 0.3369 |
20.0 | 0.5937 | 0.5702 | 0.5630 | 0.2892 | 0.3790 | 0.3757 | 0.4383 | 0.4110 | 0.2592 | 0.4147 | 0.1291 | 0.3653 |
21.0 | 0.5336 | 0.5723 | 0.5732 | 0.2843 | 0.3748 | 0.3738 | 0.4383 | 0.3876 | 0.2598 | 0.4170 | 0.1693 | 0.3624 |
22.0 | 0.5634 | 0.5752 | 0.5595 | 0.2783 | 0.3833 | 0.3540 | 0.4448 | 0.4054 | 0.2586 | 0.4145 | 0.1597 | 0.3660 |
23.0 | 0.6013 | 0.5801 | 0.5794 | 0.2988 | 0.3816 | 0.3736 | 0.4464 | 0.4241 | 0.2633 | 0.4162 | 0.1747 | 0.3530 |
24.0 | 0.6061 | 0.5756 | 0.5721 | 0.3086 | 0.3771 | 0.3707 | 0.4459 | 0.4242 | 0.2665 | 0.4104 | 0.1942 | 0.3732 |
25.0 | 0.5826 | 0.5745 | 0.5742 | 0.3109 | 0.3765 | 0.3784 | 0.4441 | 0.4184 | 0.2609 | 0.4219 | 0.1930 | 0.3765 |
26.0 | 0.5783 | 0.5821 | 0.5770 | 0.2985 | 0.3885 | 0.3582 | 0.4458 | 0.4220 | 0.2717 | 0.4260 | 0.1690 | 0.3600 |
27.0 | 0.5764 | 0.5777 | 0.5749 | 0.2868 | 0.3824 | 0.3857 | 0.4450 | 0.4170 | 0.2644 | 0.4295 | 0.1922 | - |
28.0 | 0.6023 | 0.5776 | 0.5769 | 0.2964 | 0.3759 | 0.3758 | 0.4464 | 0.4245 | 0.2712 | 0.4083 | 0.1967 | 0.3680 |
29.0 | 0.6043 | 0.5814 | 0.5728 | 0.2882 | 0.3867 | 0.3841 | 0.4369 | 0.4254 | 0.2659 | 0.4252 | 0.2106 | 0.3391 |
30.0 | 0.5840 | 0.5792 | 0.5750 | 0.2859 | 0.3839 | 0.3786 | 0.4479 | 0.4259 | 0.2664 | 0.3947 | 0.1753 | 0.3780 |
31.0 | 0.5819 | 0.5787 | 0.5775 | 0.2882 | 0.3861 | 0.3888 | 0.4522 | 0.4207 | 0.2722 | 0.4277 | 0.2050 | 0.3566 |
32.0 | 0.5769 | 0.5774 | 0.5737 | 0.2844 | 0.3762 | 0.3768 | 0.4424 | 0.4331 | 0.2649 | 0.3959 | 0.1748 | 0.3744 |
33.0 | 0.6076 | 0.5755 | 0.5774 | 0.2887 | 0.3833 | 0.3803 | 0.4483 | 0.4329 | 0.2687 | 0.4194 | 0.1884 | 0.3547 |
34.0 | 0.5729 | 0.5787 | 0.5789 | 0.2853 | 0.3854 | 0.3735 | 0.4469 | 0.4279 | 0.2694 | 0.4240 | 0.1986 | 0.3613 |
35.0 | 0.5942 | 0.5769 | 0.5777 | 0.2873 | 0.3867 | 0.3811 | 0.4448 | 0.4281 | 0.2669 | 0.4147 | 0.1956 | 0.3774 |
36.0 | 0.6024 | 0.5819 | 0.5782 | 0.2870 | 0.3850 | 0.3781 | 0.4469 | 0.4259 | 0.2696 | 0.4177 | 0.1885 | 0.3802 |
37.0 | 0.6099 | 0.5822 | 0.5787 | 0.2920 | 0.3827 | 0.3739 | 0.4416 | 0.4271 | 0.2646 | 0.4200 | 0.1864 | 0.3637 |
38.0 | 0.6028 | 0.5823 | 0.5799 | 0.2887 | 0.3828 | 0.3770 | 0.4470 | 0.4238 | 0.2639 | 0.4197 | 0.1617 | 0.3610 |
39.0 | 0.5856 | 0.5809 | 0.5772 | 0.2889 | 0.3772 | 0.3683 | 0.4493 | 0.4296 | 0.2665 | 0.4112 | 0.1902 | 0.3723 |
40.0 | 0.5830 | 0.5808 | 0.5785 | 0.2947 | 0.3803 | 0.3832 | 0.4496 | 0.4284 | 0.2675 | 0.4111 | 0.1913 | 0.3644 |
41.0 | 0.5853 | 0.5827 | 0.5786 | 0.2921 | 0.3809 | 0.3712 | 0.4464 | 0.4330 | 0.2670 | 0.4180 | 0.1631 | 0.3694 |
42.0 | 0.5756 | 0.5804 | 0.5766 | 0.2872 | 0.3775 | 0.3786 | 0.4480 | 0.4396 | 0.2669 | 0.4132 | 0.1619 | 0.3729 |
43.0 | 0.5872 | 0.5821 | 0.5762 | 0.2896 | 0.3820 | 0.3742 | 0.4499 | 0.4346 | 0.2685 | 0.4164 | 0.1848 | 0.3597 |
44.0 | 0.5894 | 0.5823 | 0.5774 | 0.2917 | 0.3801 | 0.3754 | 0.4476 | 0.4287 | 0.2635 | 0.4096 | 0.1911 | 0.3478 |
45.0 | 0.5912 | 0.5809 | 0.5791 | 0.2980 | 0.3817 | 0.3750 | 0.4483 | 0.4349 | 0.2677 | 0.4155 | 0.1909 | 0.3686 |
46.0 | 0.5922 | 0.5794 | 0.5788 | 0.2952 | 0.3804 | 0.3754 | 0.4487 | 0.4356 | 0.2641 | 0.4159 | 0.2068 | 0.3666 |
47.0 | 0.5748 | 0.5822 | 0.5779 | 0.2909 | 0.3849 | 0.3751 | 0.4487 | 0.4350 | 0.2687 | 0.4150 | 0.1785 | 0.3643 |
48.0 | 0.5787 | 0.5823 | 0.5789 | 0.2896 | 0.3819 | 0.3750 | 0.4479 | 0.4224 | 0.2665 | 0.4140 | 0.1723 | 0.3580 |
49.0 | 0.5878 | 0.5812 | 0.5782 | 0.2930 | 0.3807 | 0.3796 | 0.4482 | 0.4364 | 0.2659 | 0.4139 | 0.1915 | 0.3678 |
50.0 | 0.5922 | 0.5796 | 0.5785 | 0.2917 | 0.3793 | 0.3797 | 0.4481 | 0.4354 | 0.2647 | 0.4174 | 0.1817 | 0.3681 |
Per Category Accuracy For Each Segment
Epoch | Segment 0 | Segment 1 | Segment 2 | Segment 3 | Segment 4 | Segment 5 | Segment 6 | Segment 7 | Segment 8 | Segment 9 | Segment 10 | Segment 11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1.0 | 0.6133 | 0.6847 | 0.7408 | 0.0 | 0.4973 | 0.1720 | 0.4073 | 0.0002 | 0.0255 | 0.6371 | 0.0 | 0.2874 |
2.0 | 0.4782 | 0.7844 | 0.6966 | 0.0057 | 0.5735 | 0.3684 | 0.6226 | 0.0577 | 0.0563 | 0.5907 | 0.0 | 0.4168 |
3.0 | 0.8126 | 0.6852 | 0.6683 | 0.0420 | 0.4972 | 0.3418 | 0.5121 | 0.1453 | 0.0849 | 0.5882 | 0.0002 | 0.3672 |
4.0 | 0.8079 | 0.7362 | 0.6803 | 0.1231 | 0.5129 | 0.3324 | 0.4212 | 0.1554 | 0.1223 | 0.5587 | 0.0002 | 0.3751 |
5.0 | 0.5408 | 0.8111 | 0.7439 | 0.1647 | 0.5336 | 0.4720 | 0.5650 | 0.2459 | 0.2127 | 0.6032 | 0.0008 | 0.4343 |
6.0 | 0.6870 | 0.7532 | 0.7389 | 0.2428 | 0.5081 | 0.4173 | 0.5923 | 0.3710 | 0.3117 | 0.6181 | 0.0068 | 0.4785 |
7.0 | 0.6050 | 0.7961 | 0.7434 | 0.2876 | 0.5835 | 0.4949 | 0.5608 | 0.3103 | 0.3672 | 0.6185 | 0.0345 | 0.4022 |
8.0 | 0.6081 | 0.8461 | 0.6598 | 0.3035 | 0.5720 | 0.4540 | 0.5735 | 0.3849 | 0.2642 | 0.5608 | 0.0379 | 0.2962 |
9.0 | 0.7241 | 0.7684 | 0.7677 | 0.2958 | 0.5321 | 0.4212 | 0.5547 | 0.3513 | 0.2813 | 0.5645 | 0.0544 | 0.4465 |
10.0 | 0.7124 | 0.7649 | 0.7024 | 0.2879 | 0.5535 | 0.4413 | 0.6310 | 0.4960 | 0.3982 | 0.5592 | 0.0724 | 0.4370 |
11.0 | 0.5876 | 0.8060 | 0.7296 | 0.3838 | 0.5267 | 0.4983 | 0.5902 | 0.3838 | 0.4151 | 0.5987 | 0.1030 | 0.4756 |
12.0 | 0.6497 | 0.7807 | 0.7448 | 0.4018 | 0.5381 | 0.4615 | 0.5849 | 0.4883 | 0.3248 | 0.6063 | 0.2918 | 0.3958 |
13.0 | 0.6650 | 0.7792 | 0.7595 | 0.4049 | 0.5501 | 0.4940 | 0.5831 | 0.4375 | 0.3843 | 0.5591 | 0.2578 | 0.4711 |
14.0 | 0.6881 | 0.7715 | 0.7076 | 0.4518 | 0.6011 | 0.4900 | 0.6235 | 0.4466 | 0.3627 | 0.5934 | 0.2537 | 0.4702 |
15.0 | 0.6690 | 0.7721 | 0.7253 | 0.4607 | 0.6286 | 0.4900 | 0.5936 | 0.4951 | 0.4337 | 0.6295 | 0.1749 | 0.4630 |
16.0 | 0.5250 | 0.8335 | 0.7460 | 0.3742 | 0.6114 | 0.4823 | 0.5880 | 0.5021 | 0.4084 | 0.5757 | 0.1498 | 0.3171 |
17.0 | 0.6652 | 0.7673 | 0.7058 | 0.4318 | 0.5995 | 0.5137 | 0.6112 | 0.5596 | 0.4548 | 0.5819 | 0.2821 | 0.5465 |
18.0 | 0.6012 | 0.8091 | 0.6765 | 0.4561 | 0.5707 | 0.5393 | 0.6255 | 0.5679 | 0.4347 | 0.5567 | 0.1806 | 0.4751 |
19.0 | 0.6634 | 0.8079 | 0.6986 | 0.4389 | 0.5274 | 0.4876 | 0.6232 | 0.5022 | 0.3717 | 0.5244 | 0.2232 | 0.4388 |
20.0 | 0.7110 | 0.7679 | 0.6952 | 0.4875 | 0.5261 | 0.5549 | 0.6444 | 0.5301 | 0.4512 | 0.5441 | 0.1603 | 0.4888 |
21.0 | 0.5945 | 0.8130 | 0.7299 | 0.4511 | 0.5922 | 0.5324 | 0.5643 | 0.4341 | 0.4067 | 0.5834 | 0.2272 | 0.4781 |
22.0 | 0.6478 | 0.7921 | 0.6887 | 0.4826 | 0.5784 | 0.4599 | 0.6029 | 0.5938 | 0.4905 | 0.5605 | 0.2094 | 0.4644 |
23.0 | 0.7110 | 0.7878 | 0.7192 | 0.4629 | 0.5670 | 0.5061 | 0.5891 | 0.5354 | 0.4442 | 0.5585 | 0.2280 | 0.4401 |
24.0 | 0.7277 | 0.7718 | 0.7095 | 0.4789 | 0.5401 | 0.5080 | 0.6040 | 0.5314 | 0.4573 | 0.5414 | 0.2853 | 0.5062 |
25.0 | 0.6781 | 0.7703 | 0.7305 | 0.5102 | 0.5954 | 0.5311 | 0.5960 | 0.5286 | 0.4647 | 0.5861 | 0.2676 | 0.5242 |
26.0 | 0.6603 | 0.7989 | 0.7349 | 0.4689 | 0.5677 | 0.4620 | 0.6111 | 0.5258 | 0.4556 | 0.5889 | 0.2110 | 0.4530 |
27.0 | - | - | - | - | - | - | - | - | - | - | - | - |
28.0 | 0.7218 | 0.7735 | 0.7273 | 0.4297 | 0.6001 | 0.5321 | - | - | - | - | - | - |
29.0 | 0.7054 | 0.7948 | 0.7009 | 0.4552 | 0.5413 | 0.5357 | 0.5421 | 0.5250 | 0.4701 | 0.5949 | 0.3048 | 0.4213 |
30.0 | 0.6744 | 0.8004 | 0.7289 | 0.4421 | 0.5410 | 0.5409 | 0.5822 | 0.5334 | 0.4790 | 0.5028 | 0.2177 | 0.4910 |
31.0 | 0.6622 | 0.7858 | 0.7534 | 0.3855 | 0.5707 | 0.5889 | 0.5902 | 0.4979 | 0.4268 | 0.6260 | 0.2735 | 0.4630 |
32.0 | 0.6629 | 0.7960 | 0.7345 | 0.4132 | 0.5703 | 0.5450 | 0.5855 | 0.5469 | 0.4371 | 0.5087 | 0.2178 | 0.5147 |
33.0 | 0.7279 | 0.7642 | 0.7250 | 0.4999 | 0.5330 | 0.5418 | 0.6148 | 0.5491 | 0.4678 | 0.5808 | 0.2548 | 0.4455 |
34.0 | 0.6571 | 0.8002 | 0.7190 | 0.4516 | 0.5621 | 0.5183 | 0.5822 | 0.5444 | 0.3994 | 0.5931 | 0.2752 | 0.4588 |
35.0 | 0.6946 | 0.7771 | 0.7289 | 0.4481 | 0.5478 | 0.5396 | 0.5834 | 0.5407 | 0.4980 | 0.5652 | 0.2696 | 0.5116 |
36.0 | 0.7040 | 0.7881 | 0.7314 | 0.4432 | 0.5429 | 0.5308 | 0.5705 | 0.5124 | 0.4619 | 0.5667 | 0.2465 | 0.5101 |
37.0 | 0.7277 | 0.7884 | 0.7298 | 0.4325 | 0.5471 | 0.5196 | 0.5523 | 0.5073 | 0.4390 | 0.5614 | 0.2453 | 0.4575 |
38.0 | 0.7092 | 0.7907 | 0.7297 | 0.4713 | 0.5626 | 0.5483 | 0.5667 | 0.5067 | 0.4552 | 0.5608 | 0.2002 | 0.4545 |
39.0 | 0.6763 | 0.8000 | 0.7345 | 0.4678 | 0.5544 | 0.5005 | 0.5818 | 0.5236 | 0.4071 | 0.5436 | 0.2496 | 0.4865 |
40.0 | 0.6681 | 0.8020 | 0.7232 | 0.4519 | 0.5724 | 0.5465 | 0.5828 | 0.5132 | 0.4686 | 0.5479 | 0.2589 | 0.4678 |
41.0 | 0.6698 | 0.8022 | 0.7318 | 0.4297 | 0.5493 | 0.5160 | 0.5727 | 0.5289 | 0.4574 | 0.5711 | 0.1978 | 0.4842 |
42.0 | 0.6542 | 0.7977 | 0.7309 | 0.4450 | 0.5653 | 0.5389 | 0.5874 | 0.5625 | 0.4662 | 0.5561 | 0.1969 | 0.5024 |
43.0 | 0.6732 | 0.7995 | 0.7126 | 0.4343 | 0.5636 | 0.5217 | 0.5952 | 0.5608 | 0.4679 | 0.5672 | 0.2449 | 0.4559 |
44.0 | 0.6797 | 0.8035 | 0.7234 | 0.4571 | 0.5651 | 0.5352 | 0.5728 | 0.5156 | 0.4591 | 0.5458 | 0.2506 | 0.4307 |
45.0 | 0.6866 | 0.7923 | 0.7332 | 0.4349 | 0.5523 | 0.5312 | 0.5855 | 0.5314 | 0.4323 | 0.5653 | 0.2488 | 0.4833 |
46.0 | 0.6868 | 0.7856 | 0.7297 | 0.4426 | 0.5763 | 0.5288 | 0.5846 | 0.5331 | 0.4573 | 0.5724 | 0.2999 | 0.4811 |
47.0 | 0.6506 | 0.8100 | 0.7248 | 0.4534 | 0.5506 | 0.5230 | 0.5954 | 0.5515 | 0.4251 | 0.5546 | 0.2245 | 0.4677 |
48.0 | 0.6590 | 0.8106 | 0.7334 | 0.4353 | 0.5542 | 0.5254 | 0.5813 | 0.4869 | 0.4373 | 0.5611 | 0.2135 | 0.4503 |
49.0 | 0.6790 | 0.7967 | 0.7227 | 0.4477 | 0.5612 | 0.5523 | 0.5861 | 0.5460 | 0.4310 | 0.5518 | 0.2535 | 0.4817 |
50.0 | 0.6884 | 0.7852 | 0.7323 | 0.4523 | 0.5829 | 0.5516 | 0.5904 | 0.5289 | 0.4518 | 0.5719 | 0.2318 | 0.4783 |
- All values in the above charts are rounded to nearest ten-thousandth.
Framework versions
- Transformers 4.26.1
- Pytorch 1.12.1
- Datasets 2.9.0
- Tokenizers 0.12.1