metadata
language:
- or
license: apache-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_8_0
- generated_from_trainer
- or
- robust-speech-event
- model_for_talk
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
model-index:
- name: wav2vec2-large-xls-r-300m-or-d5
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 8
type: mozilla-foundation/common_voice_8_0
args: or
metrics:
- name: Test WER
type: wer
value: 0.579136690647482
- name: Test CER
type: cer
value: 0.1572148018392818
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: Robust Speech Event - Dev Data
type: speech-recognition-community-v2/dev_data
args: or
metrics:
- name: Test WER
type: wer
value: NA
- name: Test CER
type: cer
value: NA
wav2vec2-large-xls-r-300m-or-d5
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - OR dataset. It achieves the following results on the evaluation set:
- Loss: 0.9571
- Wer: 0.5450
Evaluation Commands
- To evaluate on mozilla-foundation/common_voice_8_0 with test split
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset mozilla-foundation/common_voice_8_0 --config or --split test --log_outputs
- To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-or-d5 --dataset speech-recognition-community-v2/dev_data --config or --split validation --chunk_length_s 10 --stride_length_s 1
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000111
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 800
- num_epochs: 200
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
9.2958 | 12.5 | 300 | 4.9014 | 1.0 |
3.4065 | 25.0 | 600 | 3.5150 | 1.0 |
1.5402 | 37.5 | 900 | 0.8356 | 0.7249 |
0.6049 | 50.0 | 1200 | 0.7754 | 0.6349 |
0.4074 | 62.5 | 1500 | 0.7994 | 0.6217 |
0.3097 | 75.0 | 1800 | 0.8815 | 0.5985 |
0.2593 | 87.5 | 2100 | 0.8532 | 0.5754 |
0.2097 | 100.0 | 2400 | 0.9077 | 0.5648 |
0.1784 | 112.5 | 2700 | 0.9047 | 0.5668 |
0.1567 | 125.0 | 3000 | 0.9019 | 0.5728 |
0.1315 | 137.5 | 3300 | 0.9295 | 0.5827 |
0.1125 | 150.0 | 3600 | 0.9256 | 0.5681 |
0.1035 | 162.5 | 3900 | 0.9148 | 0.5496 |
0.0901 | 175.0 | 4200 | 0.9480 | 0.5483 |
0.0817 | 187.5 | 4500 | 0.9799 | 0.5516 |
0.079 | 200.0 | 4800 | 0.9571 | 0.5450 |
Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0