RuBioRoBERTa_pos / README.md
DimasikKurd's picture
Training complete
0a9d877 verified
metadata
base_model: alexyalunin/RuBioRoBERTa
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RuBioRoBERTa_pos
    results: []

RuBioRoBERTa_pos

This model is a fine-tuned version of alexyalunin/RuBioRoBERTa on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5510
  • Precision: 0.6388
  • Recall: 0.5954
  • F1: 0.6163
  • Accuracy: 0.9111

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 50 0.6556 0.0 0.0 0.0 0.7611
No log 2.0 100 1.2213 0.0011 0.0019 0.0014 0.2513
No log 3.0 150 0.6117 0.0 0.0 0.0 0.7642
No log 4.0 200 0.5155 0.0135 0.0405 0.0203 0.7884
No log 5.0 250 0.4171 0.0697 0.1715 0.0991 0.8268
No log 6.0 300 0.3536 0.1054 0.1753 0.1317 0.8594
No log 7.0 350 0.3714 0.1638 0.2216 0.1884 0.8685
No log 8.0 400 0.2889 0.2477 0.3622 0.2942 0.8864
No log 9.0 450 0.2943 0.2799 0.3969 0.3283 0.8921
0.452 10.0 500 0.2916 0.3823 0.4817 0.4263 0.9011
0.452 11.0 550 0.3162 0.3329 0.4817 0.3937 0.8935
0.452 12.0 600 0.3245 0.3629 0.4971 0.4195 0.9040
0.452 13.0 650 0.3535 0.4022 0.4913 0.4423 0.9021
0.452 14.0 700 0.3313 0.4161 0.5588 0.4770 0.9023
0.452 15.0 750 0.3560 0.4210 0.5800 0.4878 0.9006
0.452 16.0 800 0.3980 0.4125 0.6224 0.4962 0.8905
0.452 17.0 850 0.3767 0.4820 0.6455 0.5519 0.9071
0.452 18.0 900 0.3947 0.4605 0.6513 0.5395 0.9034
0.452 19.0 950 0.4351 0.4395 0.5877 0.5029 0.9066
0.0844 20.0 1000 0.3581 0.4931 0.5530 0.5213 0.9097
0.0844 21.0 1050 0.4050 0.4892 0.6108 0.5433 0.9063
0.0844 22.0 1100 0.4893 0.5504 0.5472 0.5488 0.9076
0.0844 23.0 1150 0.4173 0.4722 0.6050 0.5304 0.9062
0.0844 24.0 1200 0.4307 0.4819 0.6146 0.5402 0.9075
0.0844 25.0 1250 0.3874 0.4977 0.6185 0.5515 0.9151
0.0844 26.0 1300 0.4591 0.5478 0.6513 0.5951 0.9130
0.0844 27.0 1350 0.3543 0.5308 0.5973 0.5621 0.9144
0.0844 28.0 1400 0.4676 0.5380 0.5453 0.5416 0.9187
0.0844 29.0 1450 0.4169 0.5365 0.6224 0.5763 0.9131
0.0401 30.0 1500 0.4394 0.5867 0.5607 0.5734 0.9114
0.0401 31.0 1550 0.4550 0.5446 0.6474 0.5915 0.9166
0.0401 32.0 1600 0.4592 0.5415 0.6166 0.5766 0.9125
0.0401 33.0 1650 0.5040 0.5218 0.6455 0.5771 0.9093
0.0401 34.0 1700 0.4609 0.4295 0.6686 0.5230 0.8989
0.0401 35.0 1750 0.6256 0.4833 0.6397 0.5506 0.8975
0.0401 36.0 1800 0.4697 0.5742 0.6185 0.5955 0.9088
0.0401 37.0 1850 0.5114 0.5645 0.6069 0.5850 0.9139
0.0401 38.0 1900 0.5884 0.6237 0.5780 0.6 0.9088
0.0401 39.0 1950 0.5022 0.5429 0.6455 0.5898 0.9135
0.0328 40.0 2000 0.4154 0.6315 0.6339 0.6327 0.9202
0.0328 41.0 2050 0.3940 0.5519 0.6146 0.5816 0.9145
0.0328 42.0 2100 0.3374 0.5477 0.6301 0.5860 0.9120
0.0328 43.0 2150 0.5907 0.5483 0.5029 0.5246 0.9041
0.0328 44.0 2200 0.4235 0.5606 0.6416 0.5984 0.9145
0.0328 45.0 2250 0.6646 0.0 0.0 0.0 0.7640

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2