|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: koneksi_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# koneksi_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4885 |
|
- Accuracy: 0.8177 |
|
- F1: 0.8087 |
|
- Precision: 0.8916 |
|
- Recall: 0.74 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 96 | 0.4936 | 0.7760 | 0.7817 | 0.7938 | 0.77 | |
|
| No log | 2.0 | 192 | 0.4885 | 0.8177 | 0.8087 | 0.8916 | 0.74 | |
|
| No log | 3.0 | 288 | 0.6119 | 0.7552 | 0.7662 | 0.7624 | 0.77 | |
|
| No log | 4.0 | 384 | 1.0256 | 0.7552 | 0.7314 | 0.8533 | 0.64 | |
|
| No log | 5.0 | 480 | 1.2790 | 0.7604 | 0.7629 | 0.7872 | 0.74 | |
|
| 0.2515 | 6.0 | 576 | 1.3453 | 0.7656 | 0.7716 | 0.7835 | 0.76 | |
|
| 0.2515 | 7.0 | 672 | 1.4966 | 0.7708 | 0.7864 | 0.7642 | 0.81 | |
|
| 0.2515 | 8.0 | 768 | 1.4197 | 0.7708 | 0.7660 | 0.8182 | 0.72 | |
|
| 0.2515 | 9.0 | 864 | 1.5297 | 0.7760 | 0.7861 | 0.7822 | 0.79 | |
|
| 0.2515 | 10.0 | 960 | 1.5265 | 0.7708 | 0.78 | 0.78 | 0.78 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|