Model Card for Model ID
Model Details
Model Description
- Developed by: Declan Bracken, Armando Ordorica, Michael Santorelli, Paul Zhou
- Model type: Transformer
- Language(s) (NLP): English
- Finetuned from model: BERT_base_uncased
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
Create a custom class to load in the model, the label encoder, and the BERT tokenizer used for training (bert-base-uncased) as below. use the tokenizer to tokenize any input string you'd like, then pass it through the model to get outputs.
class BERTClassifier: def init(self, model_identifier): # Load the tokenizer from bert base uncased self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
# Load the config
config = AutoConfig.from_pretrained(model_identifier)
# Load the model
self.model = BertForSequenceClassification.from_pretrained(model_identifier, config=config)
self.model.eval() # Set the model to evaluation mode
# Load the label encoder
encoder_url = f'https://huggingface.co/{model_identifier}/resolve/main/model_encoder.pkl'
self.labels = pickle.loads(requests.get(encoder_url).content)
def predict_category(self, text):
# Tokenize the text
inputs = self.tokenizer(text, return_tensors='pt', truncation=True, padding=True)
# Predict
with torch.no_grad():
outputs = self.model(**inputs)
# Get the prediction index
prediction_idx = torch.argmax(outputs.logits, dim=1).item()
# Decode the prediction index to get the label
prediction_label = self.labels[prediction_idx] # Use indexing for a NumPy array
return prediction_label
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.