metadata
library_name: transformers
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
tags:
- generated_from_trainer
model-index:
- name: l3.1-8b-dans-instruct
results: []
license: apache-2.0
See axolotl config
axolotl version: 0.4.1
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code:
# wandb configuration
wandb_project: l3.1-8b-dans-instruct
wandb_watch:
wandb_run_id:
wandb_log_model:
# where to save the finished model to
output_dir: ./l3.1-8b-dans-instruct
# dataset settings (local or huggingface repo)
datasets:
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small
type: sharegpt
conversation: chatml
- path: AquaV/Energetic-Materials-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/US-Army-Survival-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Resistance-Sharegpt
type: sharegpt
conversation: chatml
- path: AquaV/Interrogation-Sharegpt
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Mathmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Benchmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Codemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Taskmaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-ASCIIMaxx-Wordart
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Prosemaxx
type: sharegpt
conversation: chatml
- path: PocketDoc/Dans-Toolmaxx
type: sharegpt
conversation: chatml
chat_template: chatml
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
load_in_8bit: false
load_in_4bit: false
strict: false
dataset_prepared_path: ./l3.1-8b-dans-instruct-data
val_set_size: 0.03
lora_model_dir:
sequence_len: 8192
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
sample_packing: true
eval_sample_packing: true
# you can set these packing optimizations AFTER starting a training at least once.
# The trainer will provide recommended values for these values.
pad_to_sequence_len: true
#rope_scaling:
#type: # linear | dynamic
#factor: # float (2 for 2x)
adapter: # blank for full finetune
lora_r: 64
lora_alpha: 64
lora_dropout: 0.2
lora_target_linear: True
lora_target_modules:
- q_proj
- v_proj
- k_proj
- o_proj
- gate_proj
- down_proj
- up_proj
lora_modules_to_save:
- embed_tokens
- lm_head
lora_fan_in_fan_out:
gradient_accumulation_steps: 32
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0000015
cosine_min_lr_ratio:
train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 15
eval_steps: 25
# save_steps: 100
saves_per_epoch: 3
debug: false
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
pad_token: <|finetune_right_pad_id|>
eos_token: <|im_end|>
l3.1-8b-dans-instruct
This model is a fine-tuned version of Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6699
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 15
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.9964 | 0.0041 | 1 | 1.0348 |
0.8433 | 0.1025 | 25 | 0.8220 |
0.7916 | 0.2049 | 50 | 0.7465 |
0.7381 | 0.3074 | 75 | 0.7152 |
0.6802 | 0.4098 | 100 | 0.7005 |
0.7764 | 0.5123 | 125 | 0.6917 |
0.6518 | 0.6148 | 150 | 0.6871 |
0.6864 | 0.7172 | 175 | 0.6831 |
0.7217 | 0.8197 | 200 | 0.6803 |
0.7072 | 0.9221 | 225 | 0.6781 |
0.6953 | 1.0287 | 250 | 0.6764 |
0.8013 | 1.1313 | 275 | 0.6752 |
0.6296 | 1.2338 | 300 | 0.6738 |
0.7553 | 1.3364 | 325 | 0.6729 |
0.6749 | 1.4390 | 350 | 0.6722 |
0.6619 | 1.5415 | 375 | 0.6715 |
0.6527 | 1.6441 | 400 | 0.6712 |
0.7654 | 1.7467 | 425 | 0.6707 |
0.7256 | 1.8492 | 450 | 0.6705 |
0.6921 | 1.9518 | 475 | 0.6701 |
0.6982 | 2.0523 | 500 | 0.6701 |
0.6997 | 2.1548 | 525 | 0.6701 |
0.6563 | 2.2574 | 550 | 0.6700 |
0.6564 | 2.3599 | 575 | 0.6699 |
0.6248 | 2.4624 | 600 | 0.6699 |
0.6893 | 2.5650 | 625 | 0.6699 |
0.6633 | 2.6675 | 650 | 0.6698 |
0.7045 | 2.7701 | 675 | 0.6698 |
0.7784 | 2.8726 | 700 | 0.6698 |
0.7798 | 2.9751 | 725 | 0.6699 |
Framework versions
- Transformers 4.45.0.dev0
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1