|
--- |
|
library_name: transformers |
|
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: l3.1-8b-dans-instruct |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.1` |
|
```yaml |
|
base_model: Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML |
|
model_type: AutoModelForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
|
|
trust_remote_code: |
|
|
|
# wandb configuration |
|
wandb_project: l3.1-8b-dans-instruct |
|
wandb_watch: |
|
wandb_run_id: |
|
wandb_log_model: |
|
|
|
# where to save the finished model to |
|
output_dir: ./l3.1-8b-dans-instruct |
|
|
|
# dataset settings (local or huggingface repo) |
|
datasets: |
|
- path: PocketDoc/Dans-MemoryCore-CoreCurriculum-Small |
|
type: sharegpt |
|
conversation: chatml |
|
- path: AquaV/Energetic-Materials-Sharegpt |
|
type: sharegpt |
|
conversation: chatml |
|
- path: AquaV/Chemical-Biological-Safety-Applications-Sharegpt |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Mathmaxx |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Benchmaxx |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Codemaxx |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Taskmaxx |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-ASCIIMaxx-Wordart |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Prosemaxx |
|
type: sharegpt |
|
conversation: chatml |
|
- path: PocketDoc/Dans-Toolmaxx |
|
type: sharegpt |
|
conversation: chatml |
|
|
|
chat_template: chatml |
|
|
|
plugins: |
|
- axolotl.integrations.liger.LigerPlugin |
|
liger_rope: true |
|
liger_rms_norm: true |
|
liger_swiglu: true |
|
liger_fused_linear_cross_entropy: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
dataset_prepared_path: ./l3.1-8b-dans-instruct-data |
|
val_set_size: 0.03 |
|
|
|
lora_model_dir: |
|
|
|
sequence_len: 8192 |
|
|
|
# use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true' |
|
sample_packing: true |
|
eval_sample_packing: true |
|
|
|
# you can set these packing optimizations AFTER starting a training at least once. |
|
# The trainer will provide recommended values for these values. |
|
|
|
pad_to_sequence_len: true |
|
|
|
#rope_scaling: |
|
#type: # linear | dynamic |
|
#factor: # float (2 for 2x) |
|
|
|
adapter: # blank for full finetune |
|
lora_r: 64 |
|
lora_alpha: 64 |
|
lora_dropout: 0.2 |
|
lora_target_linear: True |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
- gate_proj |
|
- down_proj |
|
- up_proj |
|
lora_modules_to_save: |
|
- embed_tokens |
|
- lm_head |
|
lora_fan_in_fan_out: |
|
|
|
gradient_accumulation_steps: 32 |
|
micro_batch_size: 1 |
|
num_epochs: 3 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.0000015 |
|
cosine_min_lr_ratio: |
|
|
|
train_on_inputs: false |
|
group_by_length: true |
|
bf16: true |
|
fp16: false |
|
tf32: false |
|
|
|
gradient_checkpointing: unsloth |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
auto_resume_from_checkpoints: false |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 15 |
|
eval_steps: 25 |
|
# save_steps: 100 |
|
saves_per_epoch: 3 |
|
debug: false |
|
deepspeed: |
|
weight_decay: 0.1 |
|
fsdp: |
|
fsdp_config: |
|
|
|
|
|
special_tokens: |
|
pad_token: <|finetune_right_pad_id|> |
|
eos_token: <|im_end|> |
|
``` |
|
|
|
</details><br> |
|
|
|
# l3.1-8b-dans-instruct |
|
|
|
This model is a fine-tuned version of [Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML](https://huggingface.co/Dans-DiscountModels/Meta-Llama-3.1-8B-ChatML) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7432 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.5e-06 |
|
- train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 15 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 1.0783 | 0.0077 | 1 | 1.0298 | |
|
| 0.8528 | 0.1931 | 25 | 0.8603 | |
|
| 0.7776 | 0.3862 | 50 | 0.7925 | |
|
| 0.7089 | 0.5793 | 75 | 0.7697 | |
|
| 0.6868 | 0.7724 | 100 | 0.7584 | |
|
| 0.7158 | 0.9655 | 125 | 0.7524 | |
|
| 0.6938 | 1.1566 | 150 | 0.7488 | |
|
| 0.733 | 1.3499 | 175 | 0.7464 | |
|
| 0.7956 | 1.5433 | 200 | 0.7450 | |
|
| 0.6886 | 1.7366 | 225 | 0.7442 | |
|
| 0.9065 | 1.9299 | 250 | 0.7437 | |
|
| 0.7851 | 2.1210 | 275 | 0.7434 | |
|
| 0.7256 | 2.3142 | 300 | 0.7433 | |
|
| 0.7832 | 2.5074 | 325 | 0.7432 | |
|
| 0.7317 | 2.7006 | 350 | 0.7432 | |
|
| 0.7112 | 2.8937 | 375 | 0.7432 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|