mvit_v2_s_transf_BLANK_RWF-2000_DETECTION
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5664
- Accuracy: 0.7087
- F1: 0.7077
- Precision: 0.7117
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 3040
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision |
---|---|---|---|---|---|---|
0.7914 | 0.05 | 152 | 0.6987 | 0.5 | 0.4244 | 0.5 |
0.7892 | 1.05 | 304 | 0.6575 | 0.6438 | 0.6437 | 0.6438 |
0.5806 | 2.05 | 456 | 0.6574 | 0.6188 | 0.5947 | 0.6558 |
0.6487 | 3.05 | 608 | 0.6248 | 0.6312 | 0.5996 | 0.692 |
0.668 | 4.05 | 760 | 0.6245 | 0.6438 | 0.6375 | 0.6544 |
0.7398 | 5.05 | 912 | 0.5888 | 0.6687 | 0.6629 | 0.6812 |
0.6621 | 6.05 | 1064 | 0.6173 | 0.6625 | 0.6423 | 0.7098 |
0.5945 | 7.05 | 1216 | 0.5816 | 0.6937 | 0.6801 | 0.7335 |
0.5693 | 8.05 | 1368 | 0.6057 | 0.6562 | 0.6561 | 0.6565 |
0.5848 | 9.05 | 1520 | 0.5924 | 0.7125 | 0.7096 | 0.7214 |
0.6631 | 10.05 | 1672 | 0.5978 | 0.6625 | 0.6623 | 0.6629 |
0.6597 | 11.05 | 1824 | 0.5847 | 0.7063 | 0.7029 | 0.7160 |
0.5901 | 12.05 | 1976 | 0.5658 | 0.7375 | 0.7368 | 0.7399 |
0.5397 | 13.05 | 2128 | 0.5914 | 0.7188 | 0.7179 | 0.7216 |
0.5744 | 14.05 | 2280 | 0.5554 | 0.7312 | 0.7282 | 0.7422 |
0.5553 | 15.05 | 2432 | 0.5852 | 0.7 | 0.6952 | 0.7133 |
0.5694 | 16.05 | 2584 | 0.6053 | 0.6813 | 0.6802 | 0.6836 |
0.4737 | 17.05 | 2736 | 0.5840 | 0.7125 | 0.7123 | 0.7130 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.0.1+cu118
- Datasets 2.21.0
- Tokenizers 0.19.1