Edit model card

mvit_v2_s_transf_BLANK_RWF-2000_DETECTION

This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5664
  • Accuracy: 0.7087
  • F1: 0.7077
  • Precision: 0.7117

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3040

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision
0.7914 0.05 152 0.6987 0.5 0.4244 0.5
0.7892 1.05 304 0.6575 0.6438 0.6437 0.6438
0.5806 2.05 456 0.6574 0.6188 0.5947 0.6558
0.6487 3.05 608 0.6248 0.6312 0.5996 0.692
0.668 4.05 760 0.6245 0.6438 0.6375 0.6544
0.7398 5.05 912 0.5888 0.6687 0.6629 0.6812
0.6621 6.05 1064 0.6173 0.6625 0.6423 0.7098
0.5945 7.05 1216 0.5816 0.6937 0.6801 0.7335
0.5693 8.05 1368 0.6057 0.6562 0.6561 0.6565
0.5848 9.05 1520 0.5924 0.7125 0.7096 0.7214
0.6631 10.05 1672 0.5978 0.6625 0.6623 0.6629
0.6597 11.05 1824 0.5847 0.7063 0.7029 0.7160
0.5901 12.05 1976 0.5658 0.7375 0.7368 0.7399
0.5397 13.05 2128 0.5914 0.7188 0.7179 0.7216
0.5744 14.05 2280 0.5554 0.7312 0.7282 0.7422
0.5553 15.05 2432 0.5852 0.7 0.6952 0.7133
0.5694 16.05 2584 0.6053 0.6813 0.6802 0.6836
0.4737 17.05 2736 0.5840 0.7125 0.7123 0.7130

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Safetensors
Model size
34.6M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .