xiaowenbin
init commit
5c2417d
|
raw
history blame
3.28 kB
metadata
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - feature-extraction
  - sentence-similarity
  - transformers
  - semantic-search
  - chinese

DMetaSoul/sbert-chinese-qmc-finance-v1

此模型基于 bert-base-chinese 版本 BERT 模型,在大规模银行问题匹配数据集(BQCorpus)上进行训练调优,适用于金融领域的问题匹配场景,比如:

  • 8千日利息400元? VS 10000元日利息多少钱
  • 提前还款是按全额计息 VS 还款扣款不成功怎么还款?
  • 为什么我借钱交易失败 VS 刚申请的借款为什么会失败

Usage

1. Sentence-Transformers

通过 sentence-transformers 框架来使用该模型,首先进行安装:

pip install -U sentence-transformers

然后使用下面的代码来载入该模型并进行文本表征向量的提取:

from sentence_transformers import SentenceTransformer
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]

model = SentenceTransformer('DMetaSoul/sbert-chinese-qmc-finance-v1')
embeddings = model.encode(sentences)
print(embeddings)

2. HuggingFace Transformers

如果不想使用 sentence-transformers 的话,也可以通过 HuggingFace Transformers 来载入该模型并进行文本向量抽取:

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ["到期不能按时还款怎么办", "剩余欠款还有多少?"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')
model = AutoModel.from_pretrained('DMetaSoul/sbert-chinese-qmc-finance-v1')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation

该模型在公开的几个语义匹配数据集上进行了评测,计算了向量相似度跟真实标签之间的相关性系数:

csts_dev csts_test afqmc lcqmc bqcorpus pawsx xiaobu
sbert-chinese-qmc-finance-v1 77.40% 74.55% 36.01% 75.75% 73.25% 11.58% 54.76%

Citing & Authors

xiaowenbin@元灵数智