Edit model card

SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A ClassifierChain instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Evaluation

Metrics

Label Metric
all 0.6881

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-9classes-multi_label")
# Run inference
preds = model("my dad had huge ones..so they may be real..")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 25.8891 1681

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (3, 3)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (1.752e-05, 1.752e-05)
  • head_learning_rate: 1.752e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 30
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0004 1 0.3395 -
0.0185 50 0.3628 -
0.0370 100 0.2538 -
0.0555 150 0.2044 -
0.0739 200 0.1831 -
0.0924 250 0.2218 -
0.1109 300 0.2014 -
0.1294 350 0.2405 -
0.1479 400 0.1238 -
0.1664 450 0.1658 -
0.1848 500 0.1974 -
0.2033 550 0.1565 -
0.2218 600 0.1131 -
0.2403 650 0.0994 -
0.2588 700 0.0743 -
0.2773 750 0.0259 -
0.2957 800 0.1852 -
0.3142 850 0.1896 -
0.3327 900 0.1102 -
0.3512 950 0.0951 -
0.3697 1000 0.0619 -
0.3882 1050 0.0227 -
0.4067 1100 0.0986 -
0.4251 1150 0.0375 -
0.4436 1200 0.1151 -
0.4621 1250 0.1128 -
0.4806 1300 0.0334 -
0.4991 1350 0.1012 -
0.5176 1400 0.0895 -
0.5360 1450 0.072 -
0.5545 1500 0.0619 -
0.5730 1550 0.0852 -
0.5915 1600 0.0611 -
0.6100 1650 0.0679 -
0.6285 1700 0.0238 -
0.6470 1750 0.1776 -
0.6654 1800 0.081 -
0.6839 1850 0.1059 -
0.7024 1900 0.045 -
0.7209 1950 0.0664 -
0.7394 2000 0.0666 -
0.7579 2050 0.0714 -
0.7763 2100 0.0312 -
0.7948 2150 0.0461 -
0.8133 2200 0.0946 -
0.8318 2250 0.047 -
0.8503 2300 0.0906 -
0.8688 2350 0.0186 -
0.8872 2400 0.0937 -
0.9057 2450 0.1674 -
0.9242 2500 0.0311 -
0.9427 2550 0.0884 -
0.9612 2600 0.0787 -
0.9797 2650 0.192 -
0.9982 2700 0.0689 -
1.0166 2750 0.0945 -
1.0351 2800 0.066 -
1.0536 2850 0.0592 -
1.0721 2900 0.068 -
1.0906 2950 0.0619 -
1.1091 3000 0.0329 -
1.1275 3050 0.0986 -
1.1460 3100 0.0468 -
1.1645 3150 0.0717 -
1.1830 3200 0.0721 -
1.2015 3250 0.0345 -
1.2200 3300 0.0317 -
1.2384 3350 0.0476 -
1.2569 3400 0.122 -
1.2754 3450 0.0576 -
1.2939 3500 0.0375 -
1.3124 3550 0.1074 -
1.3309 3600 0.113 -
1.3494 3650 0.0564 -
1.3678 3700 0.0437 -
1.3863 3750 0.0623 -
1.4048 3800 0.0213 -
1.4233 3850 0.0629 -
1.4418 3900 0.059 -
1.4603 3950 0.0807 -
1.4787 4000 0.0946 -
1.4972 4050 0.0381 -
1.5157 4100 0.0451 -
1.5342 4150 0.0742 -
1.5527 4200 0.0899 -
1.5712 4250 0.0722 -
1.5896 4300 0.1022 -
1.6081 4350 0.0446 -
1.6266 4400 0.022 -
1.6451 4450 0.0586 -
1.6636 4500 0.0585 -
1.6821 4550 0.0409 -
1.7006 4600 0.0253 -
1.7190 4650 0.0363 -
1.7375 4700 0.0492 -
1.7560 4750 0.0154 -
1.7745 4800 0.0427 -
1.7930 4850 0.0284 -
1.8115 4900 0.022 -
1.8299 4950 0.0335 -
1.8484 5000 0.0222 -
1.8669 5050 0.0291 -
1.8854 5100 0.0824 -
1.9039 5150 0.0563 -
1.9224 5200 0.0355 -
1.9409 5250 0.064 -
1.9593 5300 0.0596 -
1.9778 5350 0.0789 -
1.9963 5400 0.0901 -
2.0148 5450 0.0388 -
2.0333 5500 0.0738 -
2.0518 5550 0.0712 -
2.0702 5600 0.0825 -
2.0887 5650 0.0406 -
2.1072 5700 0.0623 -
2.1257 5750 0.0423 -
2.1442 5800 0.0566 -
2.1627 5850 0.0745 -
2.1811 5900 0.0271 -
2.1996 5950 0.0257 -
2.2181 6000 0.0347 -
2.2366 6050 0.0291 -
2.2551 6100 0.0401 -
2.2736 6150 0.0222 -
2.2921 6200 0.0217 -
2.3105 6250 0.0589 -
2.3290 6300 0.0685 -
2.3475 6350 0.1191 -
2.3660 6400 0.0626 -
2.3845 6450 0.0615 -
2.4030 6500 0.0327 -
2.4214 6550 0.0431 -
2.4399 6600 0.1037 -
2.4584 6650 0.0318 -
2.4769 6700 0.062 -
2.4954 6750 0.0183 -
2.5139 6800 0.0568 -
2.5323 6850 0.0581 -
2.5508 6900 0.0363 -
2.5693 6950 0.0413 -
2.5878 7000 0.076 -
2.6063 7050 0.046 -
2.6248 7100 0.0401 -
2.6433 7150 0.0552 -
2.6617 7200 0.0767 -
2.6802 7250 0.0167 -
2.6987 7300 0.0459 -
2.7172 7350 0.0306 -
2.7357 7400 0.0559 -
2.7542 7450 0.0688 -
2.7726 7500 0.0417 -
2.7911 7550 0.033 -
2.8096 7600 0.0404 -
2.8281 7650 0.0391 -
2.8466 7700 0.0254 -
2.8651 7750 0.0635 -
2.8835 7800 0.0739 -
2.9020 7850 0.0274 -
2.9205 7900 0.0394 -
2.9390 7950 0.0606 -
2.9575 8000 0.0098 -
2.9760 8050 0.0997 -
2.9945 8100 0.0369 -

Framework Versions

  • Python: 3.9.16
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.0
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.14.6
  • Tokenizers: 0.14.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
5
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for CrisisNarratives/setfit-9classes-multi_label

Finetuned
(246)
this model

Evaluation results