metadata
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- metric
widget:
- text: >-
A combined 20 million people per year die of smoking and hunger, so
authorities can't seem to feed people and they allow you to buy cigarettes
but we are facing another lockdown for a virus that has a 99.5% survival
rate!!! THINK PEOPLE. LOOK AT IT LOGICALLY WITH YOUR OWN EYES.
- text: >-
Scientists do not agree on the consequences of climate change, nor is
there any consensus on that subject. The predictions on that from are just
ascientific speculation. Bring on the warming."
- text: >-
If Tam is our "top doctor"....I am going back to leaches and voodoo...just
as much science in that as the crap she spouts
- text: "Can she skip school by herself and sit infront of parliament? \r\n Fake emotions and just a good actor."
- text: my dad had huge ones..so they may be real..
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.5464534040070103
name: Metric
SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 13 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
5 |
|
7 |
|
9 |
|
0 |
|
2 |
|
3 |
|
6 |
|
4 |
|
1 |
|
10 |
|
8 |
|
11 |
|
12 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.5465 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("CrisisNarratives/setfit-13classes-single_label")
# Run inference
preds = model("my dad had huge ones..so they may be real..")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 25.8891 | 1681 |
Label | Training Sample Count |
---|---|
0 | 119 |
1 | 81 |
2 | 64 |
3 | 34 |
4 | 46 |
5 | 39 |
6 | 35 |
7 | 37 |
8 | 24 |
9 | 26 |
10 | 18 |
11 | 11 |
12 | 7 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 22
- body_learning_rate: (1.698e-05, 1.698e-05)
- head_learning_rate: 1.698e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 39
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.3701 | - |
0.0185 | 50 | 0.2605 | - |
0.0370 | 100 | 0.2727 | - |
0.0555 | 150 | 0.2389 | - |
0.0739 | 200 | 0.2466 | - |
0.0924 | 250 | 0.206 | - |
0.1109 | 300 | 0.2218 | - |
0.1294 | 350 | 0.1745 | - |
0.1479 | 400 | 0.2955 | - |
0.1664 | 450 | 0.1405 | - |
0.1848 | 500 | 0.202 | - |
0.2033 | 550 | 0.1614 | - |
0.2218 | 600 | 0.1953 | - |
0.2403 | 650 | 0.067 | - |
0.2588 | 700 | 0.0841 | - |
0.2773 | 750 | 0.0769 | - |
0.2957 | 800 | 0.0824 | - |
0.3142 | 850 | 0.0629 | - |
0.3327 | 900 | 0.0086 | - |
0.3512 | 950 | 0.0589 | - |
0.3697 | 1000 | 0.0469 | - |
0.3882 | 1050 | 0.0312 | - |
0.4067 | 1100 | 0.0597 | - |
0.4251 | 1150 | 0.0054 | - |
0.4436 | 1200 | 0.0029 | - |
0.4621 | 1250 | 0.0031 | - |
0.4806 | 1300 | 0.0638 | - |
0.4991 | 1350 | 0.0024 | - |
0.5176 | 1400 | 0.0023 | - |
0.5360 | 1450 | 0.0094 | - |
0.5545 | 1500 | 0.0017 | - |
0.5730 | 1550 | 0.0017 | - |
0.5915 | 1600 | 0.0371 | - |
0.6100 | 1650 | 0.0005 | - |
0.6285 | 1700 | 0.0014 | - |
0.6470 | 1750 | 0.0009 | - |
0.6654 | 1800 | 0.0103 | - |
0.6839 | 1850 | 0.0035 | - |
0.7024 | 1900 | 0.0007 | - |
0.7209 | 1950 | 0.0219 | - |
0.7394 | 2000 | 0.0014 | - |
0.7579 | 2050 | 0.0008 | - |
0.7763 | 2100 | 0.0007 | - |
0.7948 | 2150 | 0.0006 | - |
0.8133 | 2200 | 0.0054 | - |
0.8318 | 2250 | 0.0008 | - |
0.8503 | 2300 | 0.0008 | - |
0.8688 | 2350 | 0.0007 | - |
0.8872 | 2400 | 0.0007 | - |
0.9057 | 2450 | 0.001 | - |
0.9242 | 2500 | 0.0005 | - |
0.9427 | 2550 | 0.0005 | - |
0.9612 | 2600 | 0.0009 | - |
0.9797 | 2650 | 0.0003 | - |
0.9982 | 2700 | 0.0008 | - |
1.0166 | 2750 | 0.0006 | - |
1.0351 | 2800 | 0.0004 | - |
1.0536 | 2850 | 0.0002 | - |
1.0721 | 2900 | 0.001 | - |
1.0906 | 2950 | 0.0006 | - |
1.1091 | 3000 | 0.0007 | - |
1.1275 | 3050 | 0.001 | - |
1.1460 | 3100 | 0.0003 | - |
1.1645 | 3150 | 0.0004 | - |
1.1830 | 3200 | 0.0016 | - |
1.2015 | 3250 | 0.0016 | - |
1.2200 | 3300 | 0.0001 | - |
1.2384 | 3350 | 0.0001 | - |
1.2569 | 3400 | 0.0003 | - |
1.2754 | 3450 | 0.0002 | - |
1.2939 | 3500 | 0.0003 | - |
1.3124 | 3550 | 0.0003 | - |
1.3309 | 3600 | 0.0003 | - |
1.3494 | 3650 | 0.001 | - |
1.3678 | 3700 | 0.0002 | - |
1.3863 | 3750 | 0.0003 | - |
1.4048 | 3800 | 0.0002 | - |
1.4233 | 3850 | 0.0001 | - |
1.4418 | 3900 | 0.0003 | - |
1.4603 | 3950 | 0.0001 | - |
1.4787 | 4000 | 0.0002 | - |
1.4972 | 4050 | 0.0001 | - |
1.5157 | 4100 | 0.0001 | - |
1.5342 | 4150 | 0.0001 | - |
1.5527 | 4200 | 0.0003 | - |
1.5712 | 4250 | 0.0001 | - |
1.5896 | 4300 | 0.0003 | - |
1.6081 | 4350 | 0.0005 | - |
1.6266 | 4400 | 0.0002 | - |
1.6451 | 4450 | 0.0001 | - |
1.6636 | 4500 | 0.0001 | - |
1.6821 | 4550 | 0.0002 | - |
1.7006 | 4600 | 0.0001 | - |
1.7190 | 4650 | 0.0001 | - |
1.7375 | 4700 | 0.0002 | - |
1.7560 | 4750 | 0.0001 | - |
1.7745 | 4800 | 0.0 | - |
1.7930 | 4850 | 0.0002 | - |
1.8115 | 4900 | 0.0001 | - |
1.8299 | 4950 | 0.0001 | - |
1.8484 | 5000 | 0.0001 | - |
1.8669 | 5050 | 0.0001 | - |
1.8854 | 5100 | 0.0002 | - |
1.9039 | 5150 | 0.0001 | - |
1.9224 | 5200 | 0.0001 | - |
1.9409 | 5250 | 0.0 | - |
1.9593 | 5300 | 0.0001 | - |
1.9778 | 5350 | 0.0002 | - |
1.9963 | 5400 | 0.0001 | - |
2.0148 | 5450 | 0.0001 | - |
2.0333 | 5500 | 0.0002 | - |
2.0518 | 5550 | 0.0001 | - |
2.0702 | 5600 | 0.0003 | - |
2.0887 | 5650 | 0.0001 | - |
2.1072 | 5700 | 0.0002 | - |
2.1257 | 5750 | 0.0002 | - |
2.1442 | 5800 | 0.0001 | - |
2.1627 | 5850 | 0.0001 | - |
2.1811 | 5900 | 0.0001 | - |
2.1996 | 5950 | 0.0001 | - |
2.2181 | 6000 | 0.0001 | - |
2.2366 | 6050 | 0.0001 | - |
2.2551 | 6100 | 0.0001 | - |
2.2736 | 6150 | 0.0001 | - |
2.2921 | 6200 | 0.0001 | - |
2.3105 | 6250 | 0.0001 | - |
2.3290 | 6300 | 0.0002 | - |
2.3475 | 6350 | 0.0002 | - |
2.3660 | 6400 | 0.0002 | - |
2.3845 | 6450 | 0.0001 | - |
2.4030 | 6500 | 0.0001 | - |
2.4214 | 6550 | 0.0001 | - |
2.4399 | 6600 | 0.0001 | - |
2.4584 | 6650 | 0.0001 | - |
2.4769 | 6700 | 0.0001 | - |
2.4954 | 6750 | 0.0001 | - |
2.5139 | 6800 | 0.0001 | - |
2.5323 | 6850 | 0.0002 | - |
2.5508 | 6900 | 0.0001 | - |
2.5693 | 6950 | 0.0003 | - |
2.5878 | 7000 | 0.0001 | - |
2.6063 | 7050 | 0.0001 | - |
2.6248 | 7100 | 0.0001 | - |
2.6433 | 7150 | 0.0009 | - |
2.6617 | 7200 | 0.0004 | - |
2.6802 | 7250 | 0.0001 | - |
2.6987 | 7300 | 0.0 | - |
2.7172 | 7350 | 0.0002 | - |
2.7357 | 7400 | 0.0001 | - |
2.7542 | 7450 | 0.0001 | - |
2.7726 | 7500 | 0.0 | - |
2.7911 | 7550 | 0.0001 | - |
2.8096 | 7600 | 0.0001 | - |
2.8281 | 7650 | 0.0001 | - |
2.8466 | 7700 | 0.0001 | - |
2.8651 | 7750 | 0.0001 | - |
2.8835 | 7800 | 0.0001 | - |
2.9020 | 7850 | 0.0001 | - |
2.9205 | 7900 | 0.0002 | - |
2.9390 | 7950 | 0.0002 | - |
2.9575 | 8000 | 0.0001 | - |
2.9760 | 8050 | 0.0001 | - |
2.9945 | 8100 | 0.0001 | - |
0.0003 | 1 | 0.0002 | - |
0.0168 | 50 | 0.0001 | - |
0.0336 | 100 | 0.0002 | - |
0.0504 | 150 | 0.0001 | - |
0.0672 | 200 | 0.0001 | - |
0.0840 | 250 | 0.0 | - |
0.1008 | 300 | 0.0001 | - |
0.1176 | 350 | 0.0001 | - |
0.1344 | 400 | 0.0001 | - |
0.1512 | 450 | 0.0004 | - |
0.1680 | 500 | 0.0001 | - |
0.1848 | 550 | 0.0003 | - |
0.2016 | 600 | 0.0003 | - |
0.2184 | 650 | 0.0007 | - |
0.2352 | 700 | 0.0005 | - |
0.2520 | 750 | 0.0 | - |
0.2688 | 800 | 0.0002 | - |
0.2856 | 850 | 0.0002 | - |
0.3024 | 900 | 0.0002 | - |
0.3192 | 950 | 0.0001 | - |
0.3360 | 1000 | 0.0002 | - |
0.3528 | 1050 | 0.0007 | - |
0.3696 | 1100 | 0.0001 | - |
0.3864 | 1150 | 0.0004 | - |
0.4032 | 1200 | 0.0002 | - |
0.4200 | 1250 | 0.0004 | - |
0.4368 | 1300 | 0.0004 | - |
0.4536 | 1350 | 0.0037 | - |
0.4704 | 1400 | 0.0406 | - |
0.4872 | 1450 | 0.0003 | - |
0.5040 | 1500 | 0.0001 | - |
0.5208 | 1550 | 0.0003 | - |
0.5376 | 1600 | 0.0002 | - |
0.5544 | 1650 | 0.0001 | - |
0.5712 | 1700 | 0.0002 | - |
0.5880 | 1750 | 0.0002 | - |
0.6048 | 1800 | 0.0001 | - |
0.6216 | 1850 | 0.0 | - |
0.6384 | 1900 | 0.0001 | - |
0.6552 | 1950 | 0.0003 | - |
0.6720 | 2000 | 0.0 | - |
0.6888 | 2050 | 0.0001 | - |
0.7056 | 2100 | 0.0003 | - |
0.7224 | 2150 | 0.0 | - |
0.7392 | 2200 | 0.1019 | - |
0.7560 | 2250 | 0.0001 | - |
0.7728 | 2300 | 0.0001 | - |
0.7897 | 2350 | 0.0001 | - |
0.8065 | 2400 | 0.0 | - |
0.8233 | 2450 | 0.0 | - |
0.8401 | 2500 | 0.0002 | - |
0.8569 | 2550 | 0.0001 | - |
0.8737 | 2600 | 0.0001 | - |
0.8905 | 2650 | 0.0001 | - |
0.9073 | 2700 | 0.0001 | - |
0.9241 | 2750 | 0.0001 | - |
0.9409 | 2800 | 0.0002 | - |
0.9577 | 2850 | 0.0 | - |
0.9745 | 2900 | 0.0001 | - |
0.9913 | 2950 | 0.0001 | - |
1.0081 | 3000 | 0.0001 | - |
1.0249 | 3050 | 0.0 | - |
1.0417 | 3100 | 0.0001 | - |
1.0585 | 3150 | 0.0001 | - |
1.0753 | 3200 | 0.0001 | - |
1.0921 | 3250 | 0.0 | - |
1.1089 | 3300 | 0.0001 | - |
1.1257 | 3350 | 0.0001 | - |
1.1425 | 3400 | 0.0001 | - |
1.1593 | 3450 | 0.0001 | - |
1.1761 | 3500 | 0.0001 | - |
1.1929 | 3550 | 0.0 | - |
1.2097 | 3600 | 0.0001 | - |
1.2265 | 3650 | 0.0 | - |
1.2433 | 3700 | 0.0001 | - |
1.2601 | 3750 | 0.0001 | - |
1.2769 | 3800 | 0.0 | - |
1.2937 | 3850 | 0.0001 | - |
1.3105 | 3900 | 0.0 | - |
1.3273 | 3950 | 0.0001 | - |
1.3441 | 4000 | 0.0002 | - |
1.3609 | 4050 | 0.0001 | - |
1.3777 | 4100 | 0.0001 | - |
1.3945 | 4150 | 0.0001 | - |
1.4113 | 4200 | 0.0 | - |
1.4281 | 4250 | 0.0001 | - |
1.4449 | 4300 | 0.0 | - |
1.4617 | 4350 | 0.0001 | - |
1.4785 | 4400 | 0.0001 | - |
1.4953 | 4450 | 0.0001 | - |
1.5121 | 4500 | 0.0001 | - |
1.5289 | 4550 | 0.0001 | - |
1.5457 | 4600 | 0.0 | - |
1.5625 | 4650 | 0.0001 | - |
1.5793 | 4700 | 0.0001 | - |
1.5961 | 4750 | 0.0001 | - |
1.6129 | 4800 | 0.0002 | - |
1.6297 | 4850 | 0.0 | - |
1.6465 | 4900 | 0.0002 | - |
1.6633 | 4950 | 0.0 | - |
1.6801 | 5000 | 0.0 | - |
1.6969 | 5050 | 0.0001 | - |
1.7137 | 5100 | 0.0001 | - |
1.7305 | 5150 | 0.0 | - |
1.7473 | 5200 | 0.0 | - |
1.7641 | 5250 | 0.0001 | - |
1.7809 | 5300 | 0.0001 | - |
1.7977 | 5350 | 0.0 | - |
1.8145 | 5400 | 0.0003 | - |
1.8313 | 5450 | 0.0 | - |
1.8481 | 5500 | 0.0001 | - |
1.8649 | 5550 | 0.0001 | - |
1.8817 | 5600 | 0.0001 | - |
1.8985 | 5650 | 0.0001 | - |
1.9153 | 5700 | 0.158 | - |
1.9321 | 5750 | 0.0012 | - |
1.9489 | 5800 | 0.0424 | - |
1.9657 | 5850 | 0.0011 | - |
1.9825 | 5900 | 0.0002 | - |
1.9993 | 5950 | 0.1197 | - |
2.0161 | 6000 | 0.0001 | - |
2.0329 | 6050 | 0.2476 | - |
2.0497 | 6100 | 0.0029 | - |
2.0665 | 6150 | 0.0 | - |
2.0833 | 6200 | 0.0 | - |
2.1001 | 6250 | 0.0 | - |
2.1169 | 6300 | 0.0001 | - |
2.1337 | 6350 | 0.1151 | - |
2.1505 | 6400 | 0.0001 | - |
2.1673 | 6450 | 0.0001 | - |
2.1841 | 6500 | 0.0003 | - |
2.2009 | 6550 | 0.1204 | - |
2.2177 | 6600 | 0.0001 | - |
2.2345 | 6650 | 0.0 | - |
2.2513 | 6700 | 0.0016 | - |
2.2681 | 6750 | 0.0001 | - |
2.2849 | 6800 | 0.0008 | - |
2.3017 | 6850 | 0.0001 | - |
2.3185 | 6900 | 0.0 | - |
2.3353 | 6950 | 0.0 | - |
2.3522 | 7000 | 0.0 | - |
2.3690 | 7050 | 0.0003 | - |
2.3858 | 7100 | 0.0 | - |
2.4026 | 7150 | 0.0 | - |
2.4194 | 7200 | 0.0001 | - |
2.4362 | 7250 | 0.0 | - |
2.4530 | 7300 | 0.0001 | - |
2.4698 | 7350 | 0.0001 | - |
2.4866 | 7400 | 0.0001 | - |
2.5034 | 7450 | 0.0 | - |
2.5202 | 7500 | 0.0001 | - |
2.5370 | 7550 | 0.0001 | - |
2.5538 | 7600 | 0.0 | - |
2.5706 | 7650 | 0.0 | - |
2.5874 | 7700 | 0.0 | - |
2.6042 | 7750 | 0.0002 | - |
2.6210 | 7800 | 0.0001 | - |
2.6378 | 7850 | 0.0001 | - |
2.6546 | 7900 | 0.0 | - |
2.6714 | 7950 | 0.0001 | - |
2.6882 | 8000 | 0.0001 | - |
2.7050 | 8050 | 0.0 | - |
2.7218 | 8100 | 0.0 | - |
2.7386 | 8150 | 0.0001 | - |
2.7554 | 8200 | 0.0 | - |
2.7722 | 8250 | 0.0 | - |
2.7890 | 8300 | 0.0 | - |
2.8058 | 8350 | 0.0 | - |
2.8226 | 8400 | 0.0 | - |
2.8394 | 8450 | 0.0 | - |
2.8562 | 8500 | 0.0 | - |
2.8730 | 8550 | 0.0 | - |
2.8898 | 8600 | 0.0001 | - |
2.9066 | 8650 | 0.0001 | - |
2.9234 | 8700 | 0.0 | - |
2.9402 | 8750 | 0.0002 | - |
2.9570 | 8800 | 0.0 | - |
2.9738 | 8850 | 0.0001 | - |
2.9906 | 8900 | 0.0001 | - |
3.0074 | 8950 | 0.0001 | - |
3.0242 | 9000 | 0.0001 | - |
3.0410 | 9050 | 0.0 | - |
3.0578 | 9100 | 0.0 | - |
3.0746 | 9150 | 0.0001 | - |
3.0914 | 9200 | 0.0001 | - |
3.1082 | 9250 | 0.0001 | - |
3.125 | 9300 | 0.0 | - |
3.1418 | 9350 | 0.0 | - |
3.1586 | 9400 | 0.0001 | - |
3.1754 | 9450 | 0.0001 | - |
3.1922 | 9500 | 0.0 | - |
3.2090 | 9550 | 0.0 | - |
3.2258 | 9600 | 0.0 | - |
3.2426 | 9650 | 0.0 | - |
3.2594 | 9700 | 0.0 | - |
3.2762 | 9750 | 0.0002 | - |
3.2930 | 9800 | 0.0001 | - |
3.3098 | 9850 | 0.0 | - |
3.3266 | 9900 | 0.0 | - |
3.3434 | 9950 | 0.0 | - |
3.3602 | 10000 | 0.0 | - |
3.3770 | 10050 | 0.0001 | - |
3.3938 | 10100 | 0.0001 | - |
3.4106 | 10150 | 0.0 | - |
3.4274 | 10200 | 0.0 | - |
3.4442 | 10250 | 0.0001 | - |
3.4610 | 10300 | 0.0 | - |
3.4778 | 10350 | 0.1212 | - |
3.4946 | 10400 | 0.0001 | - |
3.5114 | 10450 | 0.0 | - |
3.5282 | 10500 | 0.1183 | - |
3.5450 | 10550 | 0.0 | - |
3.5618 | 10600 | 0.0002 | - |
3.5786 | 10650 | 0.0001 | - |
3.5954 | 10700 | 0.0 | - |
3.6122 | 10750 | 0.0 | - |
3.6290 | 10800 | 0.0001 | - |
3.6458 | 10850 | 0.0001 | - |
3.6626 | 10900 | 0.0 | - |
3.6794 | 10950 | 0.0 | - |
3.6962 | 11000 | 0.0 | - |
3.7130 | 11050 | 0.0 | - |
3.7298 | 11100 | 0.0 | - |
3.7466 | 11150 | 0.0 | - |
3.7634 | 11200 | 0.0 | - |
3.7802 | 11250 | 0.0 | - |
3.7970 | 11300 | 0.0 | - |
3.8138 | 11350 | 0.0 | - |
3.8306 | 11400 | 0.0 | - |
3.8474 | 11450 | 0.0 | - |
3.8642 | 11500 | 0.0001 | - |
3.8810 | 11550 | 0.0 | - |
3.8978 | 11600 | 0.0001 | - |
3.9147 | 11650 | 0.0 | - |
3.9315 | 11700 | 0.0001 | - |
3.9483 | 11750 | 0.0001 | - |
3.9651 | 11800 | 0.0001 | - |
3.9819 | 11850 | 0.0 | - |
3.9987 | 11900 | 0.0 | - |
Framework Versions
- Python: 3.9.16
- SetFit: 1.0.1
- Sentence Transformers: 2.2.2
- Transformers: 4.35.0
- PyTorch: 2.1.0+cu121
- Datasets: 2.14.6
- Tokenizers: 0.14.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}