Edit model card

This is a very small version of BERT, intended for later fine-tune under URL analysis.

An updated, lighter version of the old basic model for URL analysis

Old version: https://huggingface.co/CrabInHoney/urlbert-tiny-base-v1

Model size

3.7M params

Tensor type

F32

Test example:

from transformers import BertTokenizerFast, BertForMaskedLM, pipeline
import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Используемое устройство: {device}")

model_path = "./urlbertV2"

tokenizer = BertTokenizerFast.from_pretrained(model_path)

model = BertForMaskedLM.from_pretrained(model_path)
model.to(device)

fill_mask = pipeline(
    "fill-mask",
    model=model,
    tokenizer=tokenizer,
    device=0 if torch.cuda.is_available() else -1
)

sentences = [
    "http://example.[MASK]//"
]

for sentence in sentences:
    print(f"\nИсходное предложение: {sentence}")
    results = fill_mask(sentence)
    for result in results:
        token_str = result['token_str']
        score = result['score']
        print(f"Предсказанное слово: {token_str}, вероятность: {score:.4f}")
        

Output:

Исходное предложение: http://example.[MASK]//

Предсказанное слово: com, вероятность: 0.6949

Предсказанное слово: org, вероятность: 0.1261

Предсказанное слово: nl, вероятность: 0.0318

Предсказанное слово: net, вероятность: 0.0168

Предсказанное слово: co, вероятность: 0.0140

License

MIT

Downloads last month
2
Safetensors
Model size
3.7M params
Tensor type
F32
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for CrabInHoney/urlbert-tiny-base-v2

Finetunes
1 model