metadata
language:
- zh
license: apache-2.0
tags:
- mt5-small
- text2text-generation
- natural language understanding
- conversational system
- task-oriented dialog
datasets:
- ConvLab/crosswoz
metrics:
- Dialog acts Accuracy
- Dialog acts F1
model-index:
- name: mt5-small-nlu-all-crosswoz
results:
- task:
type: text2text-generation
name: natural language understanding
dataset:
type: ConvLab/crosswoz
name: CrossWOZ
split: test
revision: 4a3e56082543ed9eecb9c76ef5eadc1aa0cc5ca0
metrics:
- type: Dialog acts Accuracy
value: 84
name: Accuracy
- type: Dialog acts F1
value: 90.1
name: F1
widget:
- text: 'user: 你好,给我推荐一个评分是5分,价格在100-200元的酒店。'
- text: >-
system:
抱歉,为您搜索了一些经济型酒店都没有健身房。其他类型的一些酒店行吗?比如北京贵都大酒店、北京京仪大酒店这些也是很好的,就是价格高了一些。
inference:
parameters:
max_length: 100
mt5-small-nlu-all-crosswoz
This model is a fine-tuned version of mt5-small on CrossWOZ both user and system utterances.
Refer to ConvLab-3 for model description and usage.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adafactor
- lr_scheduler_type: linear
- num_epochs: 10.0
Framework versions
- Transformers 4.20.1
- Pytorch 1.11.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1